Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 15, No. 4, 2025 » Forecast of radionuclide transfer in the Kara Sea in result of a radiation accident near the port of Sabetta

FORECAST OF RADIONUCLIDE TRANSFER IN THE KARA SEA IN RESULT OF A RADIATION ACCIDENT NEAR THE PORT OF SABETTA

JOURNAL: Volume 15, No. 4, 2025, p. 495-507

HEADING: Research activities in the Arctic

AUTHORS: Antipov, S.V., Ibrayev, R.A., Kalnitsky, L.Y., Kobrinskiy, Ì.N., Semin, S.V.

ORGANIZATIONS: P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, Nuclear Safety Institute of the Russian Academy of Sciences, Marchuk Institute of Numerical Mathematics of RAS

DOI: 10.25283/2223-4594-2025-4-495-507

UDC: 621.039:332.1

The article was received on: 11.12.2024

Keywords: Arctic Ocean, ice, Sabetta seaport, radioactive pollution, Lagrangian transfer, Lagrangian-Eulerian model, ocean dynamics model, ice — ocean model, parallel computing

Bibliographic description: Antipov, S.V., Ibrayev, R.A., Kalnitsky, L.Y., Kobrinskiy, Ì.N., Semin, S.V. Forecast of radionuclide transfer in the Kara Sea in result of a radiation accident near the port of Sabetta. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 4, pp. 495-507. DOI: 10.25283/2223-4594-2025-4-495-507. (In Russian).


Abstract:

Using the Lagrangian-Eulerian model of ocean-sea ice dynamics and the transfer of Lagrangian particles, the spread of radionuclides in the waters of the Gulf of Ob and the Kara Sea is predicted. Rapid, within ~2-7 days, transfer of radionuclides by the atmosphere from the source near the port of Sabetta and their deposition on the water area surface is assumed. Scenarios of a radiation accident in summer and winter seasons are considered, with various positions of the accident site and atmospheric transfer. Based on the results of the study, it might be concluded that sea ice significantly affects the transfer of radionuclides in the Arctic seas. Radionuclides might stay preserved in sea ice for a year and more, thereby preserving the memory of past radiation accidents. Once in sea water, radionuclides drop down towards bottom, and in the case of shallow waters, they reach the bottom layer after several months and stay at the bottom layer. However, once frozen into sea ice, radionuclides can travel over significant distances during several years.


Finance info: The work was supported by the Russian Science Foundation grant No. 20-19-00615-P "Research of radioecological problems of the Arctic zone of the Russian Federation in order to increase radiation and environmental safety of humans and the environment in conditions of intensive use of offshore and onshore nuclear power plants for advanced development of the region."

References:

1. The Plan for the Development of the Northern Sea Route until 2035. Approved by the Order of the Government of the Russian Federation dated 01.08.2022 no. 2115 p. (In Russian).

2. State Program of the Russian Federation “Socio-economic Development of the Arctic Zone of the Russian Federation”. Approved by the Decree of the Government of the Russian Federation of March 30, 2021 no. 484. (In Russian).

3. Baghdasaryan A. A. Main Environmental Problems of the Northern Sea Route in Prospect of Its Development. Russian Arctic, 2020, no. 2 (9), pp. 17—29. (In Russian).

4. Nazarov V., Krasnov O., Medvedeva L. The Arctic Oil and Gas Shelf of Russia at the Stage of the World Energy Base Change. Energy Policy, 2021, no. 7 (161), pp. 70—85. (In Russian).

5. Khvostova M. S. Environmental Problems of Operating a Floating Thermal Power Plant in the Arctic Region. Russian Arctic, 2018, no. 1, p. 12. (In Russian).

6. Antipov S. V., Bilashenko V. P., Vysotskii V. L., Kalantarov V. E., Kobrinskii M. N., Sarkisov A. A., Sotnikov V. A., Shvedov P. A., Ibraev R. A., Sarkisyan A. S. Prediction and evaluation of the radioecological consequences of a hypothetical accident on the sunken nuclear submarine B-159 in the Barents Sea. Atomic Energy, 2015, vol. 119, no. 2, December, 2015, pp. 132—141.

7. van Sebille E., Griffies S. M., Abernathey R. et al. Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling, 2018, vol. 121, pp. 49—75.

8. Bertino L., Liseter K. A. The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans. J. Operat. Oceanogr., 2008, 1 (2), pp. 15—19.

9. Campin J.-M., Marshall J., Ferreira D. Sea ice–ocean coupling using a rescaled vertical coordinate z*. Ocean Modelling, 2008, 24, pp. 1—14.

10. Warner J. C., Armstrong B., He R., Zambon J. B. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Modelling, 2010, vol. 35, pp. 230—244.

11. Ushakov K. V., Ibrayev R. A., Kalmykov V. V. Simulation of the World Ocean Climate with a Massively Parallel Numerical Model. Izvestiya. Atmospheric and Oceanic Physics, 2015, vol. 51, no. 4, pp. 362—380.

12. Kalmykov V. V., Ibrayev R. A., Kaurkin M. N., Ushakov K. V. Compact Modeling Framework v3.0 for high-resolution global ocean–ice–atmosphere models. Geosci. Model Dev., 2018, 11, pp. 3983—3997.

13. Kalnitskii L. Yu., Kaurkin M. N., Ushakov K. V., Ibrayev R. A. Seasonal Variability of Water and Sea-Ice Circulation in the Arctic Ocean in a High-Resolution Model. Izvestiya. Atmospheric and Oceanic Physics, 2020, vol. 56, no. 5, pp. 522—533. DOI: 10.1134/S0001433820050060.

14. Kulakov M. Yu., Makshtas A. P., Shutilin S. V. AARI-IOCM — a mixed model of water and ice circulation in the Arctic Ocean. Problems of the Arctic and Antarctic, 2012, no. 2 (92), pp. 6—18. (In Russian).

15. Nakano H., Motoi T., Hirose K., Aoya M. Analysis of 137Cs concentration in the Pacific using a Lagrangian approach. J. of Geophysical Research, 2010, vol. 115, pp. 1—15.

16. Heldal H. E., Vikebø F., Johansen G. O. Dispersal of the radionuclide Ñaesium-137 (Cs137) from point sources in the Barents and Norwegian Seas and its potential contamination of the Arctic marine food chain: Coupling numerical ocean models with geographical fish distribution data. Environmental Pollution, 2013, vol. 180, pp. 190—198.

17. Arutyunyan R. V., Pripachkin D. A., Semenov V. N. et al. Description of the System for “Predicting the Emergency Spread of Radionuclides in the Atmosphere for Operating Russian NPPs (PARRAD)”. Technology and Operation. IBRAE Preprint no. 2016-02. Moscow, IBRAE RAN, 2016, 42 p. (In Russian).

18. Belikov V. V., Goloviznin V. M., Katyshkov Yu. V., Semenov V. N., Starodubtseva L. P., Sorokovikova O. S., Fokin A. L. NOSTRADAMUS — a software package for forecasting the radiation situation. Verification of the impurity atmospheric transfer model. Modeling of the Spread of Radionuclides in the Environment. Moscow, Science, 2008, pp. 41—103. (Proceedings of IBRAE, iss. 9). (In Russian).

19. Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Liu Z., Berner J., Wang W., Powers J. G., Duda M. G., Barker D. M., Huang X.-Y. A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR. [S. l.], 2019, 145 pp. DOI: 10.5065/1dfh-6p97.

20. Sarkisov A. A., Antipov S. V., Bilashenko V. P., Vysotsky V. L., Dzama D. V., Kobrinskiy M. N., Pripachkin D. A., Smolentsev D. O., Shvedov P. A. Development and application of an integrated system of mathematical models for the transfer of radionuclides upon a hypothetic accident to minimize radioecological consequences. Arctic: Ecology and Economy, 2021, vol. 11, no. 3, pp. 313—326. DOI: 10.25283/2223-4594-2021-3-313-326. (In Russian).


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594