| ||||
| ||||
Home » Archive of journals » Volume 14, No. 1, 2024 » Ice cellars preservation technologies to ensure sustainable development of northern settlements ICE CELLARS PRESERVATION TECHNOLOGIES TO ENSURE SUSTAINABLE DEVELOPMENT OF NORTHERN SETTLEMENTSJOURNAL: Volume 14, No. 1, 2024, p. 116-126HEADING: Regional problems AUTHORS: Loktionov, E.Y., Sharaborova, E.S., Klokov, A.V., Maslakov, A.A., Sotnikova, K.S., Korshunov, A.A. ORGANIZATIONS: Lomonosov Moscow State University, M. V. Lomonosov Northern (Arctic) Federal University, Bauman Moscow State Technical University, École Polytechnique Fédérale de Lausanne DOI: 10.25283/2223-4594-2024-1-116-126 UDC: 621.578 The article was received on: 30.10.2023 Keywords: renewable energy sources, permafrost soil, photovoltaic modules, heat pumps, refrigeration technology, soil thermal stabilization, solar panels, energy recovery, agro-technologies, trigeneration Bibliographic description: Loktionov, E.Y., Sharaborova, E.S., Klokov, A.V., Maslakov, A.A., Sotnikova, K.S., Korshunov, A.A. Ice cellars preservation technologies to ensure sustainable development of northern settlements. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 1, pp. 116-126. DOI: 10.25283/2223-4594-2024-1-116-126. (In Russian). Abstract: Ice cellars are a traditional way of long-term storage of meat and fish near the places of their commercial production in the Arctic during warm season. Due to the degradation of permafrost, these structures are in a state of disrepair everywhere. Using the example of the Chukchi national village of Lorino, where traditional hunting of sea animals is preserved, we have considered options for solving the problem of preserving the caught meat. Economic assessments show that the use of a permafrost storage facility is reasonable for storing more than 100 tons of products; for smaller volumes, it makes sense to switch to refrigeration containers powered by renewable energy sources. Selling excess energy and heat from a chiller can generate significant revenue. Especially if this energy is used to create the maximum benefit under the given conditions, e.g. in vegetable growing. Finance info: The work was supported financially by the Russian Science Foundation and the Arkhangelsk Region (grant 22-19-20026, https://rscf.ru/project/22-19-20026/). References: 1. George J. C., Wetzel D., O’Hara T. M. et al. An Analysis of Ancient Bowhead Whale Mangtak from Gambell Alaska: What can it Tell Us? International Whaling Commission Scientific Committee Documents. Santiago, Chile, International Whaling Commission, 2008. 2. Yoshikawa K., Osipov D., Serikov S. et al. Traditional Ice Cellars (Lednik, Bulus) in Yakutia: Characteristics, Temperature Monitoring, and Distribution. Arctic 21 Century. Environmental Sciences, 2016, 1 (4), pp. 15—22. 3. Maslakov A., Nyland K., Komova N. et al. Community Ice Cellars in Eastern Chukotka: Climatic and Anthropogenic Influences on Structural Stability. Geography, Environment, Sustainability, 2020, 13 (3), pp. 49—56. DOI: 10.24057/2071-9388-2020-71. 4. Nyland K., Klene A., Brown J. et al. Traditional Iñupiat Ice Cellars (SIĠļUAQ) in Barrow, Alaska: Characteristics, Temperature Monitoring, and Distribution. Geographical Rev., 2017, 107, pp. 143—158. DOI: 10.1111/j.1931-0846.2016.12204.x. 5. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, 2021. 6. Huang J., Zhang X., Zhang Q. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 2017, 7, pp. 875—879. DOI: 10.1038/s41558-017-0009-5. 7. Biskaborn B. K., Smith S. L., Noetzli J. et al. Permafrost is warming at a global scale. Nature Communications, 2019, 10, pp. 1—11. DOI: 10.1038/s41467-018-08240-4. 8. Vasiliev A. A., Drozdov D. S., Gravis A. G. et al. Permafrost degradation in the Western Russian Arctic. Environmental. Research Letters, 2020, 15 (4), p. 045001. DOI: 10.1088/1748-9326/ab6f12. 9. Farquharson L. M., Romanovsky V. E., Cable W. L. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Research Letters, 2019, 46 (12), pp. 6681—6689. DOI: 10.1029/2019GL082187. 10. Miner K. R., Turetsky M. R., Malina E. et al. Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment, 2022, 3, pp. 55—67. DOI: 10.1038/s43017-021-00230-3. 11. Streletskiy D. A., Suter L. J., Shiklomanov N. I. et al. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environmental Research Letters, 2019, 14, p. 025003. DOI: 10.1088/1748-9326/AAF5E6. 12. Hjort J., Karjalainen O., Aalto J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 2018, 9 (1), pp. 1—9. DOI: 10.1038/s41467-018-07557-4. 13. Melnikov V. P., Osipov V. I., Brouchkov A. V. et al. Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050. Natural Hazards, 2022, p. 1—21. DOI: 10.1007/s11069-021-05179-6. 14. Badina S., Pankratov A. Assessment of the Impacts of Climate Change on the Russian Arctic Economy (including the Energy Industry). Energies, 2022, 15 (8), p. 2849. DOI: 10.3390/en15082849. 15. Weingartner K. A., Antonov E. V., Maslakov A. A. Assessing Energy Security in Nome and Lavrentiya. Urban Sustainability in the Arctic: Measuring Progress in Circumpolar Cities. Providence, USA, Berghahn Books, 2020, pp. 165—195. DOI: 10.2307/j.ctv1tbhq16. 16. Maslakov A., Sotnikova K., Gribovskii G., Evlanov D. Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic. Energies, 2022, 15, p. 972. DOI: 10.3390/en15030972. 17. Wang G.-F., Lin C., Zhu L. et al. Performance analyses of two-phase closed thermosyphons for road embankments in the high-latitude permafrost regions. J. of Mountain Science, 2023, 20, pp. 3138—3153. DOI: 10.1007/s11629-023-8215-2. 18. Zhi W., Yu S., Wei M., Wu J. Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions. Cold Regions Science and Technology, 2005, 43 (3), pp. 150—163. DOI: 10.1016/j.coldregions.2005.04.001. 19. Gagnon S., Fortier D., Sliger M., Rioux K. Air-convection-reflective sheds: A mitigation technique that stopped degradation and promoted permafrost recovery under the Alaska Highway, south-western Yukon, Canada. Cold Regions Science and Technology, 2022, 197, p. 103524. DOI: 10.1016/j.coldregions.2022.103524. 20. Loktionov E., Sharaborova E., Shepitko T. A sustainable concept for permafrost thermal stabilization. Sustainable Energy Technologies and Assessments, 2022, 52, p. 102003. DOI: 10.1016/j.seta.2022.102003. 21. Loktionov E. Yu., Sharaborova E. S., Klokov A. V., Bakmadov A. V., Korshunov A. A. On the possibility of extending the service life of winter roads using renewable energy sources. Arctic: Ecology and Economy, 2023, vol. 13, no. 4, pp. 570—578. DOI: 10.25283/2223-4594-2023-4-570-578. (In Russian). 22. Peterson R., Wendler K. Preservation of traditional ice cellars. A modeling study of zero-energy solutions for enhancing thermal resilience. Fairbanks, Univ. of Alaska, 2011. Available at: https://acep.uaf.edu/media/260236/IceCellarsModelingFinalReport.pdf. 23. Seroka-Stolka O., Ociepa-Kubicka A. Green logistics and circular economy. Transportation Research Procedia, 2019, 39, pp. 471—479. DOI: 10.1016/j.trpro.2019.06.049. 24. Asanov I., Loktionov E. Possible benefits from PV modules integration in railroad linear structures. Renewable Energy Focus, 2018, 25, pp. 1—3. DOI: 10.1016/j.ref.2018.02.003. 25. Naumenko S., Nabatchikova T., Gusev G., Polivoda F. Impact of External Conditions on Selecting Special Transport Vehicle for Perishable Cargo Transportation. Transportation Research Procedia, 2021, 54, pp. 445—454. DOI: 10.1016/j.trpro.2021.02.094. 26. Klokov A. V., Tutunin A. S., Sharaborova E. S., Korshunov A. A., Loktionov E. Y. Inverter Heat Pumps as a Variable Load for Off-Grid Solar-Powered Systems. Energies, 2023, 16, p. 5987. DOI: 10.3390/en16165987. 27. Klokov A. V., Loktionov E. Y., Loktionov Y. V., Panchenko V. A., Sharaborova E. S. A Mini-Review of Current Activities and Future Trends in Agrivoltaics. Energies, 2023, 16, p. 3009. DOI: 10.3390/en16073009. 28. Sharaborova E., Shepitko T., Loktionov E. Experimental Proof of a Solar-Powered Heat Pump System for Soil Thermal Stabilization. Energies, 2022, 15, p. 2118. DOI: 10.3390/en15062118. 29. Mori Y. New agro-technology (Imec) by hydrogel membrane. Reactive and Functional Polymers, 2013, 73, pp. 936—938. DOI: 10.1016/j.reactfunctpolym.2012.11.015. 30. Lopes I., Yong J., Lalander C. Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management, 2022, 142, pp. 65—76. DOI: 10.1016/j.wasman.2022.02.007. 31. The shortage of refrigeration capacities in Russian ports is about 130 thousand tons. Available at: https://portnews.ru/news/354180/. (In Russian). Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|