Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 14, No. 3, 2024 » Climatic changes of air temperature in the western part of the Russian Arctic in 1940—2099 according to ERA5 data and CMIP6 models

CLIMATIC CHANGES OF AIR TEMPERATURE IN THE WESTERN PART OF THE RUSSIAN ARCTIC IN 1940—2099 ACCORDING TO ERA5 DATA AND CMIP6 MODELS

JOURNAL: Volume 14, No. 3, 2024, p. 334-349

HEADING: Research activities in the Arctic

AUTHORS: Serykh, I.V., Tolstikov, A.V.

ORGANIZATIONS: P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, Northern Water Problems Institute of the Karelian Research Centre of the RAS

DOI: 10.25283/2223-4594-2024-3-334-349

UDC: 551.583

The article was received on: 02.02.2024

Keywords: White sea, Barents sea, climate change, Kara sea, surface air temperature, CMIP6 models

Bibliographic description: Serykh, I.V., Tolstikov, A.V. Climatic changes of air temperature in the western part of the Russian Arctic in 1940—2099 according to ERA5 data and CMIP6 models. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 3, pp. 334-349. DOI: 10.25283/2223-4594-2024-3-334-349. (In Russian).


Abstract:

The study deals with the climatic changes in surface air temperature (SAT) in the western part of the Russian Arctic (60—80° N, 30—90° E). To analyze the changes in SAT that occurred over the period 1940—2023, we use data from the ERA5 reanalysis and the results of the Historical model experiment CMIP6. Future changes in SAT until the end of the 21st century we consider based on the results of SSP experiments of CMIP6 models. An increase in the average SAT of the studied region by 2—4°C is shown from approximately the mid-1970s to 2023. Moreover, this increase in SAT is most noticeable in the White and Kara Seas, as well as in the north and east of the Barents Sea. CMIP6 models based on different greenhouse gas emission scenarios produce markedly different forecasts for the increase in SAT for the region under study until the end of the 21st century. Thus, depending on the scenario, the average increase in SAT in the region under study by the end of the 21st century can range from 2—4°C to 6—10°, with stronger growth of SAT in the north of the region under study. At the same time, with little dependence on the future scenario, CMIP6 models predict that in the next 30 years the average SAT of the western part of the Russian Arctic will increase by approximately 2—3°C, and in the north of the region under study its increase may be more than 3°C, and in south — about 2°C. Thus, the difference in average SAT between the north and south of the region under study will decrease throughout the 21st century under any of the SSP scenarios considered.


Finance info: I. V. Serykh carried out this research within the framework of the state assignment of the Shirshov Institute of Oceanology of the Russian Academy of Sciences on topic no. FMWE-2024-0017 “Long-term evolution of ocean circulation and flows at the ocean-atmosphere boundary and the ocean role in climate formation”. A. V. Tolstikov carried out this research within the framework of the state assignment of the Institute of Water Problems of the North of the Karelian Scientific Center of the Russian Academy of Sciences on topic no. FMEN-2021-0004 “Comprehensive studies of the White Sea and watershed for development of the Arctic zone of the Russian Federation.”

References:

1. Summary for Policymakers. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC. Geneva, Switzerland, 34 p. DOI: 10.59327/IPCC/AR6-9789291691647.001.

2. Review of hydrometeorological processes in the Northern polar region in 2022. Ed. by A. S. Makarov. St. Petersburg, AARI, 2023, 80 p. (In Russian).

3. Moon T. A., Druckenmiller M. L., Thoman R. L. Executive Summary. NOAA Technical Report OAR ARC; 21—01. Arctic Report Card 2021, 4 p. DOI: 10.25923/5s0f-5163.

4. Mironov E. U., Klyachkin S. V., Smolyanitsky V. M., Yulin A. V., Frolov S. V. Current state and prospects for research of the ice cover of the Russian Arctic seas. Russian Arctic, 2020, no. 3 (10), pp. 13—29. DOI: 10.24411/2658-4255-2020-12102. (In Russian).

5. Dumanskaya I. O. Ice conditions of the seas of the European part of Russia. Moscow; Obninsk, IG-SOTSIN, 2014, 608 p. (In Russian).

6. Bukatov A. E., Bukatov A. A., Babiy M. V. Spatiotemporal variability of sea ice distribution in the Arctic. Cryosphere of the Earth, 2017, vol. XXI, no. 1, pp. 85—92. DOI: 10.21782/KZ1560-7496-2017-1(85-92). (In Russian).

7. Druckenmiller M. L., R. L. Thoman, T. A. Moon, Eds., Arctic Report Card 2022, DOI: 10.25923/yjx6-r184.

8. Malinin V. N., Vaynovskiy P. A. When will the regions become ice-free in the Arctic? Uchenye zapiski RGGMU, 2019, no. 56, pp. 98—109. (In Russian).

9. Magritsky D. V. Anthropogenic impacts on the flow of rivers flowing into the seas of the Russian Arctic. Water Resources, 2008, vol. 35, no. 1, pp. 3—16. (In Russian).

10. Nasonova O., Gusev Ye., Kovalev E. Detection and attribution of changes in streamflow and snowpack in Arctic river basins. Climatic Change, 2023, vol. 176, no. 11, pp. 148—170. DOI: 10.1007/s10584-023-03626-w.

11. Gelfan A., Kalugin A., Krylenko I. Detection, attribution, and specifying mechanisms of hydrological changes in geographically different river basins. Climatic Change, 2023, 176 (9), pp. 122—142. DOI: 10.1007/s10584-023-03557-6.

12. Birchall T., Jochmann M., Betlem P. et al. Permafrost trapped natural gas in Svalbard, Norway. Front. Earth Sci., Sec. Cryospheric Sciences, 2023, vol. 11. DOI: 10.3389/feart.2023.1277027.

13. Alekseev G. V. Manifestation and intensification of global warming in the Arctic. Fundamental and Applied Climatology, 2015, no. 1, pp. 11—26. (In Russian).

14. Volodin E. M. On the mechanism of Arctic climate oscillation with a period of about 15 years according to data of the INM RAS climate model. Izv. Atmos. Ocean. Phys., 2020, 56, pp. 112—122. DOI: 10.1134/S0001433820020140. (In Russian).

15. Serykh I. V., Tolstikov A. V. Climate change in the western part of the Russian Arctic in 1980—2021. Pt. 1. Air temperature, precipitation, wind. Problemy Arktiki i Antarktiki, 2022, vol. 68, no. 3, pp. 258—277. DOI: 10.30758/0555-2648-2022-68-3-258—277. (In Russian).

16. Diansky N. A., Solomonova I. V., Gusev A. V. Assessing the prospects for navigation along the Northern Sea Route based on a combined forecast scenario. Proceedings of the State Oceanographic Institute, 2018, no. 219, pp. 249—268. (In Russian).

17. Panin G. N., Vyruchalkina T. Yu., Solomonova I. V. Climatic changes in the Arctic, North Atlantic, Caspian region and their relationship. Fundamental and Applied Climatology, 2015, no. 1, pp. 183—210. (In Russian).

18. Vicente-Serrano S., Peña-Gallardo M., Hannafofr J. et al. Climate, irrigation, and land cover change explain streamflow trends in countries bordering the Northeast Atlantic. Geophys Res Lett., 2019, 46 (19), pp. 10821—10833. DOI: 10.1029/2019GL0840 84.

19. Chernov I., Tolstikov A. The White Sea: Available Data and Numerical Models. Geosciences, 2020, 10, p. 463. DOI: 10.3390/geosciences10110463.

20. Third assessment report on climate change and its consequences on the territory of the Russian Federation. Ed. by V. M. Kattsov. Saint Petersburg, High technology, 2022, 126 p. (In Russian).

21. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 2020, no. 146, pp. 1999—2049.

22. Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP / NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 1996, vol. 77, pp. 437—471. DOI: 10.1175/1520-0477(1996)0772.0.CO;2.

23. Serykh I. V., Tolstikov A. V. Climate change in the western part of the Russian Arctic in 1980—2021. Pt. 2. Soil temperature, snow, humidity. Problemy Arktiki i Antarktiki, 2022, 68 (4), pp. 352—369. (In Russian).

24. Eyring V., Bony S., Meehl G. A. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev, 2016, vol. 9, pp. 1937—1958.

25. O’Neill B. C., Tebaldi C., van Vuuren D. P. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9 (9), pp. 3461—3482. DOI: 10.5194/gmd-9-3461-2016.

26. Taylor K. E., Stouffer R. J., Meehl G. A. An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc., 2012, 93, pp. 485—498. DOI: 10.1175/BAMS-D-11-00094.1.

27. Lobanov V. A., Abannikov V. N., Okulicheva A. A., Grigorieva A. A. Current and future climate changes in the Leningrad region and their impact on agroclimatic characteristics. Meteorology and Hydrology, 2023, no. 9, pp. 100—113. (In Russian).

28. Serykh I. V., Kostianoy A. G. Seasonal and interannual variability of the Barents Sea temperature. Ecologica Montenegrina, 2019, vol. 25, pp. 1—13. DOI: 10.37828/em.2019.25.1.

29. Serykh I. V., Tolstikov A. V. On the causes of the long-term variability of surface air temperature over the White Sea. Vestnik Moskovskogo universiteta. Ser. 5. Geografiya, 2020, no. 4, pp. 83—95. (In Russian).

30. Seryh I. V., Kostyanoy A. G., Lebedev S. A., Kostyanaya E. A. On the Transition of Temperature Regime of the White Sea Region to a New Phase State. Fundam. i prikladnaya gidrofizika, 2022, vol. 15, no. 1, pp. 98—111. DOI: 10.48612/fpg/k9x4-p8fz-5kz6. (In Russian).

31. Gregory J. M., Andrews T., Ceppi P. et al. How accurately can the climate sensitivity to CO2 be estimated from historical climate change? Clim. Dyn., 2020, vol. 54, pp. 129—157. DOI: 10.1007/s00382-019-04991-y.


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594