Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 15, No. 2, 2025 » Explosive degassing of the Earth in the north of Western Siberia: land and coastal parts of the Kara Sea

EXPLOSIVE DEGASSING OF THE EARTH IN THE NORTH OF WESTERN SIBERIA: LAND AND COASTAL PARTS OF THE KARA SEA

JOURNAL: Volume 15, No. 2, 2025, p. 162-176

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A.

ORGANIZATIONS: Oil and Gas Research Institute of RAS

DOI: 10.25283/2223-4594-2025-2-162-176

UDC: 553.981.2, 504.4

The article was received on: 17.02.2025

Keywords: gas hydrates, remote sensing of the Earth, Kara sea, crater, pockmarks, Yamal peninsula, gas seeps, Western Siberia, explosive degassing of the Earth, heaving mounds

Bibliographic description: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A. Explosive degassing of the Earth in the north of Western Siberia: land and coastal parts of the Kara Sea. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 2, pp. 162-176. DOI: 10.25283/2223-4594-2025-2-162-176. (In Russian).


Abstract:

It has been substantiated that remote sensing (RS) data gives possibility for successful study of hazardous objects of explosive degassing of the Earth. As a result of comprehensive RS studies, 7,783 explosive degassing zones have been discovered in the northern part of Western Siberia, including 6,300 at the bottom of 4,736 thermokarst lakes, 139 at the bottom of 29 rivers, and 1,344 in shallow water areas of the Kara Sea. The largest Neyto-Seyakha degassing area coincides with the central part of the Yamal graben rift, and the Sabetta area is confined to the South Tambeyskoye field. Intensive degassing zones have also been discovered in the northern part of the Mutny Bay, in the Ob and Taz Bays of the Kara Sea. Large degassing centers are apparently associated with subvertical migration of deep gas along permeable faults and/or dissociation of gas hydrates during the growth of taliks on lakes and rivers that do not freeze to the bottom.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic «Increasing the efficiency and ecological safety of hydrocarbon resources development of the shelf and adjacent land of the Russian Arctic and Subarctic regions in conditions of changing climate» (No. 125020501403-7). The authors are grateful to the Government of the Yamal-Nenets Autonomous District, Gazprom PJSC, NOVATEK PJSC and the Russian Center for Arctic Development for the long-term support of expeditionary work in Yamal.

References:

1. Trofimuk A. A. Forty years of struggle for the development of the oil and gas production industry of Siberia. Novosibirsk, Publish. House of the Siberian Branch of the Russian Academy of Sciences, 1997, 369 p. (In Russian).

2. Brekhuntsov A. M., Monastyrev B. V., Nesterov I. I. Regularities of the distribution of oil and gas deposits in Western Siberia. Geology and Geophysics, 2011, vol. 52, no. 8, pp. 1001—1012. (In Russian).

3. Skorobogatov V. A., Stroganov L. V., Kopeev V. D. Geological structure and gas and oil potential of Yamal. Moscow, OOO Nedra-Business Center, 2003, 352 p. (In Russian).

4. Map of the thickness and structure of permafrost strata of the West Siberian Plate. Eds. V. T. Trofimov, V. V. Baulin. Moscow, Glavtyumengeologiya; Moscow State University; PNIIIS, 1984. 1 p. (In Russian).

5. Cryosphere of oil and gas condensate fields of the Yamal Peninsula. Vol. 2. Cryosphere of the Bovanenkovo oil and gas condensate field. Eds. Yu. V. Badu, N. A. Gafarov, E. E. Podborny. Moscow, OOO Gazprom Expo, 2013. 424 p. (In Russian).

6. Badu Yu. B. Cryogenic thickness of gas-bearing structures of Yamal. On the influence of gas deposits on the formation and development of cryogenic thickness. Moscow, Scientific World, 2018, 232 p. (In Russian).

7. Yakushev V. S., Perlova E. V., Makhonina N. A. et al. Gas hydrates in sediments of continents and islands. J. of the Russian Chemical Society, 2003, vol. 47, no. 3, pp. 80—90. (In Russian).

8. Yakushev V. S. Natural gas and gas hydrates in the cryolithozone. Moscow, VNIIGAZ, 2009, 192 p. (In Russian).

9. Chuvilin E. M., Perlova E. V., Baranov Yu. B., Kondakov V. V., Osokin A. B., Yakushev V. S. Structure and properties of rocks in the cryolithozone of the southern part of the Bovanenkovo gas condensate field. Moscow, GEOS, 2007, 137 p. (In Russian).

10. Chuvilin E. M., Grebenkin S. I., Sakle M. Effect of moisture content on gas permeability of sand rocks in frozen and thawed states. Earth’s Cryosphere, 2016, vol. 20, no. 3, pp. 71—78. DOI: 10.21782/KZ1560-7496-2016-3(71-78). (In Russian).

11. Biskaborn B. K., Smith S. L., Noetzli J. et al. Permafrost is warming at a global scale. Nature Communications, 2019, vol. 10, pp. 264.

12. Saunois M., Stavert A. R., Poulter B. et al. The Global Methane Budget 2000—2020. Earth System Science Data, 2024, pp. 1—146. Available at: https://doi.org/10.5194/essd-2024-115.

13. Bondur V. G., Golitsyn G. S., Mokhov I. I. et al. Methane and climate change: scientific problems and technological aspects. Moscow, Russian Academy of Sciences, 2022, 388 p. (In Russian).

14. Sergienko V. I., Lobkovskiy L. I., Shakhova N. E. et al. Degradation of underwater permafrost and degradation of hydrates of the Eastern Arctic Shelf seas as a possible cause of a “methane catastrophy”: some results of complex research in 2011. Dokl. Akad. nauk, 2012, vol. 446, no. 3, pp. 330—335. (In Russian).

15. Anisimov O. A., Kokorev V. A. Comparative Analysis of the Land, Marine and Satellite Observations of Methane in the Lover Atmosphere in the Russian Arctic under the Conditions of the Changing Climate. Earth Research from Space, 2015, no. 2, pp. 1—14. (In Russian).

16. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Explosive degassing of the Earth on the Yamal Peninsula and the adjacent Kara Sea. Arctic: Ecology and Economy, 2024, vol. 14, no. 2, pp. 177—191. DOI: 10.25283/2223-4594-2024-2-177-191. (In Russian).

17. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Russian Mining Industry, 2020, pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian).

18. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arctic: Ecology and Economy, 2021, vol. 11, no. 1, pp. 51—66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian).

19. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Development monitoring of the C22 gas blowout Doublet object on Yamal peninsula using remote sensing data. Arctic: Ecology and Economy, 2024, vol. 14, no. 3, pp. 320—333. DOI: 10.25283/2223-4594-2024-3-320-333. (In Russian).

20. Bogoyavlensky V. I., Bogoyavlensky I. V., Kishankov A. V. Geophysical methods of ensuring technological sovereignty and national security of Russia in the Arctic. Herald of the Russian Academy of Sciences, 2024, vol. 94, no. 10, pp. 32—46. DOI: 10.31857/S08695873241005e6.

21. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A., Sizov O. S. Earth degassing in the Arctic: remote and field studies of the thermokarst lakes gas eruption. Arctic: Ecology and Economy, 2019, no. 2 (34), pp. 31—47. DOI: 10.25283/2223-4594-2019-2-31-47. (In Russian).

22. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Remote detection of areas of surface gas shows and gas emissions in the Arctic: Yamal Peninsula. Arctic: Ecology and Economy, 2016, no. 3 (23), pp. 4—13. (In Russian).

23. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Technologies for remote detection and monitoring of Earth degassing in the Arctic: Yamal Peninsula, Lake Neito. Arctic: Ecology and Economy, 2018, no. 2 (30), pp. 83—93. (In Russian).

24. Kuzin I. L. About the nature of anomalous lakes — indicators of the accumulation of hydrocarbons in the deep horizons of the sedimentary cover. Problems of assessing new oil and gas accumulation zones in the main productive strata of Western Siberia. St. Petersburg, VNIGRI, 1992, pp. 129—137. (In Russian).

25. Bondur V. G., Kuznetsova T. V. Identification of gas seeps in the waters of the Arctic seas using remote sensing data. Earth Research from Space, 2015, no. 4, pp. 30—43. (In Russian).

26. Bogoyavlensky V. I., Sizov O. S., Nikonov R. A., Bogoyavlensky I. V., Kargina T. A. Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions. Arctic: Ecology and Economy, 2020, no. 3 (39), pp. 6—22. DOI: 10.25283/2223-4594-2020-3-6- 22. (In Russian).

27. Oblogov G. E., Vasiliev A. A., Orekhov P. T. et al. Gas funnels and methane in lake sediments of Yamal. Cryosphere of the Earth, 2024, vol. 28, no. 1, pp. 50—61. DOI: 10.15372/KZ20240105. (In Russian).

28. Bogoyavlensky V. I., Nikonov R. A., Bogoyavlensky I. V. New data on intensive Earth degassing in the Arctic in the north of Western Siberia: thermokarst lakes with gas blowout craters and mud volcanoes. Arctic: Ecology and Economy, 2023, vol. 13, no. 3, pp. 353—368. DOI: 10.25283/2223-4594-2023-3-353-368. (In Russian).


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594