Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 15, No. 1, 2025 » Determination of climatic season boundaries for the parameterization of the atmospheric impurity transport model in the Russian Arctic territory

DETERMINATION OF CLIMATIC SEASON BOUNDARIES FOR THE PARAMETERIZATION OF THE ATMOSPHERIC IMPURITY TRANSPORT MODEL IN THE RUSSIAN ARCTIC TERRITORY

JOURNAL: Volume 15, No. 1, 2025, p. 27-36

HEADING: Study and development of nature resources of the Arctic

AUTHORS: Lokhov, A.S., Kotova, E.I., Chibisova, V.G.

ORGANIZATIONS: P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, North-Western branch of P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2025-1-27-36

UDC: 551.58+504.3.054

The article was received on: 18.12.2024

Keywords: NDVI vegetation index, climate change in the Arctic, Russian Arctic, transport of impurities in the atmosphere, climate season, stable snow cover, winter duration

Bibliographic description: Lokhov, A.S., Kotova, E.I., Chibisova, V.G. Determination of climatic season boundaries for the parameterization of the atmospheric impurity transport model in the Russian Arctic territory. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 1, pp. 27-36. DOI: 10.25283/2223-4594-2025-1-27-36. (In Russian).


Abstract:

The paper identifies the boundaries of climate seasons for the Russian Arctic. The winter season is defined as a period with stable snow cover, and the summer season is an active vegetation period. Snow cover data are provided by meteorological stations, the vegetation period is determined by the NDVI index based on satellite images. The study purpose is to determine the season boundaries at the selected reference points for parameterization of the impurity transport model using the trajectory analysis method. For comparison, the climate season boundaries have been calculated at the considered reference points based on the average daily temperature using a simplified methodology without trend analysis. Another part of the study is devoted to a related problem — comparing the temporal boundaries of the winter season for 1991—2020 and 1961—1990. Based on these indicators, maps with interpolated surfaces have been built, and conclusions drawn about the unevenness of their changes in the considered territory.


Finance info: The research was funded by the Russian Science Foundation, grant no. 23-27-00225 “Atmospheric transport as a source of pollution of ecosystems in the western sector of the Russian Arctic”.

References:

1. Vinogradova A. A., Veremeichik A. O. Prospective sources of atmospheric aerosol pollution near Nenetzky nature reserve. Atmospheric and Oceanic Optics, 2012, no. 9, pp. 760—767. Available at: https://www.elibrary.ru/pciojv. (In Russian).

2. Vinogradova A. A., Ivanova Yu. A. Atmospheric transport of black carbon to the Russian Arctic from different sources: winter and summer 2000—2016. Atmospheric and Oceanic Optics, 2023, no. 6, pp. 425—432. Available at: https://doi.org/10.15372/AOO20230601. (In Russian).

3. Vinogradova A. A. Distant evaluation of atmospheric pollution influence on the remote territories. Izvestiya, Atmospheric and Oceanic Physics, 2014, vol. 13, no. 4, pp. 5—20. Available at: https://www.elibrary.ru/tctexr. (In Russian).

4. Rutkovskaya N. V. Climatic characteristics of the year seasons in Tomsk region. Tomsk, 1979, 116 p. (In Russian).

5. Jaagus J., Ahas R. Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Climate Research, 2000, vol. 15, pp. 207—219. Available at: http://dx.doi.org/10.3354/cr015207.

6. Ma B., Zhang B., Jia L. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017. J. of Geographical Sciences, 2020, vol. 30 (9), pp. 1387—1400. Available at: https://doi.org/10.1007/s11442-020-1788-6.

7. Dzerdzeyevskiy B. L. Circulation mechanisms in the atmosphere of the Northern Hemisphere in the 20th century. Proceedings of Meteorological Researches. Moscow, 1968, 240 p. (In Russian).

8. Semenov S. M., Dobrolyubov N. Yu. Classification of the Earth’s surface points based on the properties of the yearly course of variables characterizing a state of the near-surface layer. Fundamental and Applied Climatology, 2024, vol. 10, no. 1, pp. 93—108. Available at: https://doi.org/10.21513/2410-8758-2024-1-93-108. (In Russian).

9. Alekhin S. G., Ivanov R. D., Shemelov V. A. Quantitative characteristics of natural climatic seasons of individual areas of the Arctic region. Trudy Voyenno-kosmicheskoi akademii imeni A. F. Mozhaiskogo, 2021, no. 677, pp. 70—74. Available at: https://www.elibrary.ru/ttoonq. (In Russian).

10. Kopanev I. D. Climatic aspects of snow cover study. L., Hydrometeoizdat, 1982, 231 p. (In Russian).

11. Razuvaev V. N., Bulygina O. N., Korshunova N. N. et al. Scientific and applied reference book “Climate of Russia”. Database No. 2020621470. VNIIGMI-MCD. Available at: http://aisori-m.meteo.ru. (In Russian).

12. Cherepanov A. S. Vegetation indices. Geomatics, 2011, no. 2, pp. 98—102. Available at: https://www.elibrary.ru/stytln. (In Russian).

13. Vermote E. NOAA CDR Program: NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI), Version 5. NOAA National Centers for Environmental Information, 2019. Available at: https://doi.org/10.7289/V5ZG6QH9.

14. Bulygina O. N., Veselov V. M., Korshunova N. N. Atmospheric phenomena at meteorological stations of Russia (timeframes). Database No. 2015620081. VNIIGMI-MCD. Available at: http://aisori-m.meteo.ru. (In Russian).

15. Salomonson V. V., Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment, 2004, vol. 89, iss. 3, pp. 351—360. Available at: https://doi.org/10.1016/j.rse.2003.10.016.

16. Zvyagina E. A., Pereyaslovets T. S. Long-term phenoclimatic averages of the Yuganskiy Nature Reserve territory and changes for 1961—2016. Environmental Dynamics and Global Climate Change, 2018, vol. 9, no. 2, pp. 28—39. Available at: https://doi.org/10.17816/edgcc10367. (In Russian).

17. Kotova E. I., Starodymova D. P., Lokhov A. S., Netsvetayeva O. P. Composition of suspended sediment in the snow cover of the western sector of the Russian Arctic. Water Resources, 2024, vol. 4, ðð. 591—601. (In Russian).

18. Starodymova D. P., Kotova E. I., Shevchenko V. P., Titova K. V., Lukyanova O. N. Winter atmospheric deposition of trace elements in the Arkhangelsk region (NW Russia): Insights into environmental effects. Atmospheric Pollution Research, 2024, vol. 15, iss. 12, 102310. Available at: https://doi.org/10.1016/j.apr.2024.102310.

19. Titkova T. B., Zolotokrylin A. N. Regional unevenness of the summer warming in the continental Arctic as an indicator of natural boundaries of northern landscapes. Arctic: Ecology and Economy, 2021, vol. 11, no. 3, pp. 386—396. Available at: https://doi.org/10.25283/2223-4594-2021-3-386-396. (In Russian).


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594