Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » No. 3(23) 2016 » On tsunami hazard in the Arctic Region

ON TSUNAMI HAZARD IN THE ARCTIC REGION

JOURNAL: No. 3(23) 2016, p. 38-49

HEADING: Research activities in the Arctic

AUTHORS: Kulikov, E.A., Ivashchenko, A.I., Medvedev, I.P., Yakovenko, O.I., Kovachev , S.A.

ORGANIZATIONS: P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, E. K. Fedorov Institute of Applied Geophysics

UDC: 551.466.62

Keywords: Arctic Ocean, earthquake, seismic activity, scenario modeling, tsunami, shelf

Bibliographic description: Kulikov, E.A., Ivashchenko, A.I., Medvedev, I.P., Yakovenko, O.I., Kovachev , S.A. On tsunami hazard in the Arctic Region. Arctic: ecology and economy, 2016, no. 3(23), pp. 38-49. DOI: . (In Russian).


Abstract:

Tsunami hazard in the Arctic Region is discussed. The greatest danger of tsunami of seismotectonic origin for the Arctic coast of Russia comes from the earthquakes that occur in the area of underwater Gakkel Ridge. The earthquakes with magnitude Mw ~ 6.5-7.0 and frequency of 10-2/year and with magnitude Mw ~ 7.5 and frequency of 10-3/year may occur in this area. Using numerical scenario modeling, two of the most powerful earthquakes recorded in the basin of the Arctic Ocean: in the Baffi n Bay (1933, Mw = 7,7) and in the Laptev Sea (1964, Mw = 6,7) where the maximum height of tsunami waves on the coast near the earthquake centre would reach 10 m and 0.3 m, were simulated.


Finance info: Работа выполнена в рамках целевого инновационного проекта ОАО «НК «Роснефть» и при поддержке гранта Российского научного фонда (проект № 14-50-00095)

References:

1. Avetisov G. P. Seysmoaktivnyye zony Arktiki. [Arctic seismically active zones]. St. Petersburg ,VNIIOkeanologiya, 1996, р. 186. . (In Russian).

2. Avetisov G. P. Seysmichnost Arkticheskoy materikovoy okrainy Rossii. [Seismicity of the Arctic Mainland of Russia]. Geologiya i poleznyye iskopayemyye Rossii. — Vol. 5: Arkticheskiye i dalnevostochnyye morya. — Book 1: Arkticheskiye morya / Red. I. S. Gramberg, V. L. Ivanov, Yu. E. Pogrebitskiy. St. Petersburg, Izd-vo VSEGEI, 2004, рр. 31—42. (In Russian).

3. Evzerov V. Ya. Uzhasnoye sobytiye. sluchivsheyesya v 1888 godu v sele Kashkarantsy. [The terrible event that happened in 1888 in the village of Kashkarantsy]. Priroda, 2014, no. 5, рр. 74—77. (In Russian).

4. Malovichko A. A., Vinogradov A. N., Vinogradov Yu. A. Razvitiye sistem geofizicheskogo monitoringa v Arktike. [Development of geophysical monitoring systems in the Arctic]. Arktika: ekologiya i ekonomika, 2014, no.2 (14), рр. 16—23. (In Russian).

5. Nikonov A. A. Nebyvaloye bedstviye v sele Kashkarantsy. [Unprecedented disaster in the village of Kashkarantsy]. Priroda, 2015, no. 1 (1193), рр. 51—55. (In Russian).

6. Solovyev S. L., Go Ch. N. Katalog tsunami na zapadnom poberezhye Tikhogo okeana. [Tsunami catalog on the west coast of the Pacific Ocean]. Moscow, Nauka, 1974, р.310. (In Russian).

7. Amundson J. M., Truff er M., Lüthi M. P. et al. Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland // Geophys. Res. Lett. — 2008. — Vol. 35 (22). — L22501. — doi:10.1029/2008GL035281.

8. ANSS ComCat. Composite Earthquake Catalog, Northern California Earthquake Data Center. 2014 // http://www.quake.geo.berkeley.edu/cnss/.

9. Bent A. L. The 1933 Ms = 7.3 Baffi n Bay earthquake: strike-slip faulting along the northeastern Canadian passive margin // Geophys. J. Int. — 2002. — Vol. 150, no. 3. — P. 724—736.

10. Bird P. An updated digital model of plate boundaries // Geochem., Geophys., Geosyst. — 2003. — Vol. 4, no. 3. — 1027. — doi:10.1029/2001GC000252.

11. Bondevik S., Gjevik B., Sørensen M. B. Norwegian seiches from the giant 2011 Tohoku earthquake // Geophys. Res. Let. — 2013. — Vol. 40, no. 13. — P. 3374—3378.

12. Bondevik S., Mangerud J., Dawson S. Record-breaking height for 8000-year-old tsunami in the North Atlantic // EOS. — 2003. — Vol. 84. — P. 289—293.

13. Dudley W. C., Lee M. Tsunami! — [S. l.]: Univ. of Hawaii Press, 1998. — 362 p.

14. Fine I. V., Kulikov E. A., Cherniawsky J. Y. Japan’s 2011 Tsunami: characteristics of wave propagation from observations and numerical modelling // Pure and Appl. Geophys. — 2013. — Vol. 170. — P. 1295—1307.

15. IBCAO Version 3.0 (International Bathymetric Chart of the Arctic Ocean) // http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/.

16. Imamura F. Review of Tsunami Simulation with a Finite Diff erence Method // Long-Wave Runup Models / Ed. H. Yeh, P. Liu, C. Synolakis. — New York: World Scientific, River Edge, 2004. — P. 43—87.

17. ISC-GEM Catalogue // Physics of the Earth and Planetary Interiors. — 2015. — Vol. 239. — P. 1—64 (http://www.isc.ac.uk/iscgem/index.php).

18. Jakobsson M., Mayer L. A., Coakley B. et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0 // Geophys. Res. Let. — 2012. — Vol. 39. — L12609. — doi:10.1029/2012GL052219.

19. Jemsek J. P., Bergman E. A., Nabelek J. L., Solomon S. C. Focal depths and mechanisms of large earthquakes on the Arctic mid-ocean ridge system // J. Geophys. Res. — 1986. — Vol. 91. — P. 13993—14005.

20. Kvale A. Seismic seiches in Norway and England during the Assam earthquake of August 15, 1950 // Bull. Seismol. Soc. Amer. — 1955. — Vol. 45, no. 2. — P. 93—113.

21. Leonard L., Roger G., Mazotti S. Tsunami hazard assessment of Canada // Nat. Hazards. — 2014. — Vol. 70, no. 1. — P. 237—274. — doi:10.1007/s11069-013-0809-5.

22. Macayeal D. R., Abbot D. S., Sergienko O. V. Icebergcapsize tsunamigenesis // Ann. Glaciol. — 2011. — Vol. 52, no. 58. — P. 51—56.

23. Michael A. J. How complete is the ISC-GEM Global Earthquake Catalog? // Bull. Seism. Soc. Am. — 2014. — Vol. 104. — P. 1829—1837.

24. NGDC/WDS Global Historical Tsunami Database. — doi:10.7289/V5PN93H7 // https://www.ngdc.noaa.gov/hazard/tsu_db.shtml.

25. Okada Y. Surface deformation due to shear and tensile faults in a half-space // Bull. Seism. Soc. Am. — 1985. — Vol. 75. — P. 1135—1154.

26. Pugh D., Woodworth P. Sea-level science: Understanding tides, surges, tsunamis and mean sea-level changes. — [S. l.]: Cambridge Univ. Press, 2014. — 395 p.

27. Romundset A., Bondevik S. Propagation of the Storegga tsunami into ice-free lakes along the southern shores of the Barents Sea // J. Quaternary Sci. — 2011. — Vol. 26. — P. 457—462. — doi:10.1002/jqs.1511.

28. Ruffman A, Murty T. Tsunami hazards in the Arctic regions of North America, Greenland and the Norwegian Sea / Program and Abstracts, International Tsunami Society Third Tsunami Symposium. 2006. Honolulu, HI, May 23—25.

29. Sloan R. A., Jackson J. A., McKenzie D., Priestley K. Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension // Geophys. J. Int. — 2011. — Vol. 185, no. 1. — P. 1—29.

30. Smith D. E., Shib S., Cullingford R. A. et al. The Holocene Storegga Slide tsunami in the United Kingdom // Quaternary Science Rev. — 2004. — Vol. 23. — P. 2291— 2321. — doi:10.1016/j.quascirev.2004.04.001.

31. Snyder J. P. Map projections — A working manual. — [S. l.]: US Government Printing Office, 1987. — 1395 p.

32. Solheim A., Berg K., Forsberg C. F., Bryn P. The Storegga Slide complex: repetitive large scale sliding with similar cause and development // Marine and Petroleum Geology. — 2005. — Vol. 22. — P. 97—107. — doi:10.1016/j.marpetgeo.2004.10.013.

33. Ward S. N., Day S. The 1963 landslide and flood at Vaiont Reservoir Italy. A tsunami ball simulation // Italian J. of Geosciences. — 2011. — Vol. 130, no. 1. — P. 16—26.

34. Wells D. L., Coppersmith K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bull. Seism. Soc. Am. — 1994. — Vol. 84. — P. 974—1002.


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594