| ||||
| ||||
Home » Archive of journals » No. 4(24) 2016 » Destabilization of relict methane hydrates with observed changes of regional climate DESTABILIZATION OF RELICT METHANE HYDRATES WITH OBSERVED CHANGES OF REGIONAL CLIMATEJOURNAL: No. 4(24) 2016, p. 46-51HEADING: Research activities in the Arctic AUTHORS: Arzhanov, M.M., Mokhov, I.I., Denisov, S.N. ORGANIZATIONS: A.M.Obukhov Institute of Atmospheric Physics Russian Academy of Sciences UDC: 551.583 Keywords: permafrost, climate change, ice ages, relict gas hydrates Bibliographic description: Arzhanov, M.M., Mokhov, I.I., Denisov, S.N. Destabilization of relict methane hydrates with observed changes of regional climate. Arctic: ecology and economy, 2016, no. 4(24), pp. 46-51. DOI: . (In Russian). Abstract: The calculations of the thermal state of soil of the Yamal Peninsula and adjacent regions for the last 90 thousand years are performed. According to the results, the depth of the upper boundary of stability zone of methane hydrates in the region could reach the surface under the climatic conditions of maximum glaciation about 90 thousand years ago. The estimates of the impact of current climate change on the strength of permafrost and stability of relict methane hydrates on the Yamal Peninsula are given. The formation of craters after gas emissions on the Yamal Peninsula may relate to destabilization of relict methane hydrates by increasing the surface temperature in recent years. Finance info: Ðàáîòà âûïîëíåíà â ðàìêàõ ïðîãðàìì ÐÀÍ è ïðîåêòîâ ÐÔÔÈ (14-05-00639, 14-05-00193, 14-05-93089, 15-05-02157, 15-35-21061, 15-05-02457) References: 1. Arzhanov M. M., Eliseyev A. V., Demchenko P. F., Mokhov I. I. Modelirovaniye izmeneniy temperaturnogo i gidrologicheskogo rezhimov pripoverkhnostnoy merzloty s ispolzovaniyem klimaticheskikh dannykh (reanaliza). [Modeling changes in temperature and hydrological regimes of near-surface permafrost using climate data (reanalysis)]. Kriosfera Zemli, 2007, Vîl. 11, nî. 4, ðð. 65—69. (In Russian). 2. Arzhanov M. M., Eliseyev A. V., Demchenko P. F. åt àl. Modelirovaniye temperaturnogo i gidrologicheskogo rezhima vodosborov sibirskikh rek v usloviyakh vechnoy merzloty s ispolzovaniyem dannykh reanaliza. [Simulation of temperature and hydrological regime of catchments of Siberian rivers in permafrost conditions using reanalysis data]. Izv. RAN. Fizika atmosfery i okeana, 2008, Vîl. 44, nî. 1, ðð. 86—93. (In Russian). 3. Arzhanov M. M., Eliseyev A. V., Mokhov I. I. Vliyaniye klimaticheskikh izmeneniy nad sushey vnetropicheskikh shirot na dinamiku mnogoletnemerzlykh gruntov pri stsenariyakh RCP v XXI v. po raschetam globalnoy klimaticheskoy modeli IFA RAN. [The impact of climate change over land of extratropical latitudes on the dynamics of permafrost under the RCP scenarios in the XXI century. according to the calculations of the global climate model of the IFA RAS]. Meteorologiya i gidrologiya, 2013, nî.7, ðð. 31—42. (In Russian). 4. Arzhanov M. M., Mokhov I. I. Temperaturnyye trendy v mnogoletnemerzlykh gruntakh Severnogo polushariya: Sravneniye modelnykh raschetov s dannymi nablyudeniy. [Temperature trends in permafrost soils of the Northern Hemisphere: Comparison of model calculations with observational data]. Dokl. AN, 2013, Vîl. 449, nî. 1, ðð. 87—92. (In Russian). 5. Arzhanov M. M., Mokhov I. I., Denisov S. N. Vliyaniye regionalnykh klimaticheskikh izmeneniy na ustoychivost reliktovykh gazovykh gidratov. [The impact of regional climate change on the stability of relict gas hydrates]. Dokl. AN, 2016, Vîl. 468, nî. 5, ðð. 572—574. (In Russian). 6. Bogoyavlenskiy V. I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala i Taymyra. Ch. 2[The threat of catastrophic gas emissions from the Arctic cryolithozone. Funnels of Yamal and Taimyr. Part 2]. Bureniye i neft, 2014, nî. 10, ðð. 4—8. (In Russian). 7. Bogoyavlenskiy V. I., Garagash I. A. Obosnovaniye protsessa obrazovaniya kraterov gazovogo vybrosa v Arktike matematicheskim modelirovaniyem. [Justification of the process of formation of craters of gas emissions in the Arctic by mathematical modeling]. Arktika: ekologiya i ekonomika, 2015, nî 3 (19), ðð. 12—17. (In Russian). 8. Eliseyev A. V., Arzhanov M. M., Demchenko P. F., Mokhov I. I. Izmeneniya klimaticheskikh kharakteristik sushi vnetropicheskikh shirot Severnogo polushariya v XXI veke: otsenki na osnove klimaticheskoy modeli IFA RAN. [Changes in the climatic characteristics of the land of the extratropical latitudes of the Northern Hemisphere in the 21st century: estimates based on the IFA RAS climate model]. Izv. RAN. Fizika atmosfery i okeana, 2009, Vîl. 45. nî. 3, ðð. 291—304. (In Russian). 9. Istomin V. A., Nesterov A. N., Chuvilin E. M. åt àl. Razlozheniye gidratov razlichnykh gazov pri temperaturakh nizhe 273 K[Decomposition of hydrates of various gases at temperatures below 273 K]. Gazokhimiya, 2008, Vîl. 3. nî. 2, ðð. 30—44. (In Russian). 10. Kizyakov A. I., Sonyushkin A. V., Leybman M. O. åt àl. Geomorfologicheskiye usloviya obrazovaniya voronki gazovogo vybrosa i dinamika etoy formy na tsentralnom Yamale. [Geomorphological conditions for the formation of a gas emission funnel and the dynamics of this form in central Yamal]. Kriosfera Zemli, 2015, Vîl. 19, nî. 2, ðð. 15—25. (In Russian). 11. Leybman M. O., Kizyakov A. I. Novyy prirodnyy fenomen v zone vechnoy merzloty. [New natural phenomenon in the permafrost zone]. Priroda, 2016, nî. 2, ðð. 15—24. (In Russian). 12. Leybman M. O., Plekhanov A. V. Yamalskaya voronka gazovogo vybrosa: rezultaty predvaritelnogo obsledovaniya. [Yamal gas emission funnel: the results of a preliminary survey]. Kholod, 2014, nî. 2, ðð. 5—8. (In Russian). 13. Melnikov V. P., Nesterov A. N., Podenko L. S. åt àl. Metastabilnyye sostoyaniya gazovykh gidratov pri davleniyakh nizhe ravnovesiya led-gidrat-gaz. [Metastable states of gas hydrates at pressures below the ice-hydrate-gas equilibrium]. Kriosfera Zemli, 2011, Vîl. 15, nî. 4, ðð. 80—83. (In Russian). 14. Mokhov I. I. Sovremennyye izmeneniya klimata v Arktike. [Current climate change in the Arctic]. Vestn. RAN, 2015, Vîl. 85, nî. 5—6, ðð. 478—484. (In Russian). 15. Mokhov I. I., Bezverkhniy V. A., Karpenko A. A. Diagnostika vzaimnykh izmeneniy soderzhaniya parnikovykh gazov i temperaturnogo rezhima atmosfery po paleorekonstruktsiyam dlya antarkticheskoy stantsii Vostok. [Diagnostics of mutual changes in the content of greenhouse gases and atmospheric temperature in paleoreconstructions for the Antarctic station Vostok]. Izv. RAN. Fizika atmosfery i okeana, 2005, Vîl. 41. nî. 5, ðð. 579—592. (In Russian). 16. Mokhov I. I., Bezverkhniy V. A., Karpenko A. A. Vzaimnyye izmeneniya temperaturnogo rezhima i soderzhaniya parnikovykh gazov v atmosfere po paleorekonstruktsiyam dlya poslednikh 800 tysyach let. [Mutual changes in temperature and the content of greenhouse gases in the atmosphere by paleoreconstructions for the last 800 thousand years]. Ekstremalnyye prirodnyye yavleniya i katastrofy, Vîl. 1: Otsenka i puti snizheniya negativnykh posledstviy ekstremalnykh prirodnykh yavleniy, Moscow, IFZ RAN, 2010, ðð. 312—319. (In Russian). 17. Mokhov I. I., Eliseyev A. V. Modelirovaniye globalnykh klimaticheskikh izmeneniy v XX—XXIII vekakh pri novykh stsenariyakh antropogennykh vozdeystviy RCP [Modeling global climate change in the XX — XXIII centuries under new scenarios of anthropogenic effects of RCP]. Dokl. AN, 2012, Vîl. 443, nî. 6, ðð. 732—736. (In Russian). 18. Pavlov A. V., Malkova G. V. Melkomasshtabnoye kartografirovaniye trendov sovremennykh izmeneniy temperatury gruntov na severe Rossii. [Small-scale mapping of trends in current ground temperature changes in northern Russia]. Kriosfera Zemli, 2009, Vîl. 13, nî. 4, ðð. 32—39. (In Russian). 19. Slagoda E. A., Ermak A. A. Deshifrirovaniye ekzogennykh protsessov tipichnykh tundr poluostrova Yamal na primere territorii rayona srednego techeniya reki Yuribey. [Interpretation of the exogenous processes of typical tundras of the Yamal Peninsula on the example of the territory of the region of the middle reaches of the Yuribey River]. Vestn. TGU, 2014, nî. 4, ðð. 28—38. (In Russian). 20. Timoshenko S. P., Voynovskiy-Kriger S. Plastinki i obolochki. [Plates and shells]. Moscow, Nauka, 1966, ð.636. (In Russian). 21. Fedoseyev S. M. Gazovyye gidraty kriolitozony. [Gas hydrates of cryolithozone]. Nauka i obrazovaniye, 2006, Vîl. 41, nî. 1, ðð. 22—27. (In Russian). 22. Khantemirov R. M., Surkov A. Yu. Izmeneniya temperatury leta na Yamale po dannym drevesnykh kolets. Dinamika ekosistem v golotsene [Changes in summer temperature in Yamal according to tree rings. Dynamics of ecosystems in the Holocene]. Materialy Vtoroy rossiyskoy nauchnoy konferentsii, Ekaterinburg, 2010,ðð. 210—214. (In Russian). 23. Tsytovich N. A.. Sumgin M. I. Osnovaniya mekhaniki merzlykh gruntov. [Foundations of frozen soil mechanics]. Moscow, Izd-vo AN SSSR,1937, ð. 432. (In Russian). 24. Chuvilin E. M., Bukhanov B. A. Izmeneniye teploprovodnosti gazonasyshchennykh porod pri gidratoobrazovanii i zamorazhivanii-ottaivanii. — Ch. 1: Metodika issledovaniy. [Change of thermal conductivity of gas-saturated rocks during hydrate formation and freeze-thawing. - Part 1: Research Methods]. Kriosfera Zemli, 2014, Vîl. 18, nî. 1, ðð. 70—76. (In Russian). 25. Chuvilin E. M., Yakushev V. S., Perlova E. V., Kondakov V. V. Gazovaya komponenta tolshch merzlykh porod v predelakh Bovanenkovskogo gazokondensatnogo mestorozhdeniya (poluostrov Yamal). [The gas component of frozen strata within the Bovanenkovo gas condensate field (Yamal Peninsula]. Dokl. AN, 1999, Vîl. 369, nî. 4, ðð. 522—524. (In Russian). 26. Yakushev V. S. Prirodnyy gaz i gazovyye gidraty v kriolitozone. [Natural gas and gas hydrates in the cryolithozone]. Moscow, VNIIGAZ, 2009, ð. 192. (In Russian). 27. Yakushev V. S., Perlova E. V., Makhonina N. A. åt àl. Gazovyye gidraty v otlozheniyakh materikov i ostrovov. [Gas hydrates in sediments of continents and islands]. Ros. khim. zhurn., 2003, Vîl. 47, nî. 3, ðð. 80—90. (In Russian). 28. Arzhanov M. M., Eliseev A. V., Mokhov I. I. A global climate model based, Bayesian climate projection for northern extra-tropical land areas // Glob. Planet. Change, 2012, Vol. 86—87, ðð. 57—65. 29. Briffa K. R., Shishov V. V., Melvin T. M. et al. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia // Philosophical Transactions of the Royal Society, 2008, Vol. 363, nî. 1501, ðð. 2271—2284. 30. Davies J. H. Global map of solid Earth surface heat flow // Geochem. Geophys. Geosyst, 2013, Vol. 14, ðð. 1—15. 31. Glasser N. F., Siegert M. J. Calculating basal temperatures in ice sheets: an Excel spreadsheet method // Earth Surf. Process. Landforms, 2002, Vol. 27, ðð. 673—680. 32. Ingolfsson O., Moller O., Lokrantz H. Late Quaternary marine-based Kara Sea ice sheets: a review of terrestrial stratigraphic data highlighting their formation // Polar Research, 2008, Vol. 27, ðð. 152—161. 33. Kleman J., Fastook J., Ebert K. et al. Pre-LGM Northern Hemisphere ice sheet topography // Clim. Past., 2013, Vol. 9, ðð. 2365—2378. 34. Lambeck K., Purcell A., Funde S. et al. Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling // Boreas. 2006, Vol. 35, ðð. 539—575. 35. Solomina O. N., Bradley R. S., Hodgson D. A. et al. Holocene glacier fluctuations // Quaternary Science Rev, 2015, Vol. 111, ðð. 9—34. 36. Wanner H., Beer J., Butikofer J. et al. Mid- to Late Holocene climate change: an overview // Quaternary Science Rev., 2008, Vol. 27, ðð. 1791—1828. Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|