Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 15, No. 3, 2025 » Anomalous rapid growth and explosion of the C23 Yamal gas-dynamic heaving mound in 2020—2024

ANOMALOUS RAPID GROWTH AND EXPLOSION OF THE C23 YAMAL GAS-DYNAMIC HEAVING MOUND IN 2020—2024

JOURNAL: Volume 15, No. 3, 2025, p. 4-17

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A., Gavrilov, A.A.

ORGANIZATIONS: Oil and Gas Research Institute of RAS

DOI: 10.25283/2223-4594-2025-3-4-17

UDC: 502.171, 504.4, 504.7, 553.981.2

The article was received on: 07.07.2025

Keywords: Bovanenkovo field, gas blowout (emission), remote sensing of the Earth, crater, Yamal peninsula, permafrost, digital elevation model (DEM), ArcticDEM, perennial heaving mounds (PHM)

Bibliographic description: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A., Gavrilov, A.A. Anomalous rapid growth and explosion of the C23 Yamal gas-dynamic heaving mound in 2020—2024. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 3, pp. 4-17. DOI: 10.25283/2223-4594-2025-3-4-17. (In Russian).


Abstract:

During the Yamal-2024 expedition, the authors studied for the first time the C23 site of catastrophic gas explosion on August 30, 2024 in the area of the Bovanenkovo oil and gas condensate field, Yamal Peninsula, on the slope of the marine terrace. Based on the photogrammetric processing of 463 UAV aerial images, 3D-model and digital twins of the C23 object were built, including the ones in virtual reality controlled by artificial intelligence. Monitoring studies from 2011 to 2024 using RS (remote sensing) data (ArcticDEM and UAVs) revealed an anomalous high average perennial heaving mound growth rate of about 40 cm/year for four years before its explosion, which, together with similar data previously obtained at sites C11, C17 and C22, can serve as the main criterion for identifying explosive perennial heaving mounds. Thus the authors have confirmed the endogenous gas-dynamic mechanism of the perennial heaving mound growth with subsequent powerful blowout, self-ignition and gas explosion with the formation of a crater in the cavity top. The results make it possible to reduce the risk of emergency and catastrophic situations at the oil and gas facilities in the Arctic.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences (OGRI RAS) on the topic “Improving the efficiency and environmental safety of the oil and gas resources development in the Arctic and Subarctic zones of the Earth in a changing climate” (no. 122022800264-9).

References:

1. Bogoyavlensky V. I. The threat of catastrophic gas blowouts from the Arctic cryolithozone. Yamal craters. Oil and Drilling, 2014, no. 9, pp. 13—18. (In Russian).

2. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N. Catastrophic gas blowout in 2020 on the Yamal Peninsula in the Arctic. Results of comprehensive analysis of aerospace RS data. Arctic: Ecology and Economy, 2021, vol. 11, no. 3, pp. 362—374. DOI: 10.25283/2223-4594-2021-3-362-374. (In Russian).

3. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Russian Mining Industry, 2020, no. 1 (149), pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian).

4. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arctic: Ecology and Economy, 2021, vol. 11, no. 1, pp. 51—66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian).

5. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. Seyakha catastrophic blowout and explosion of gas from the permafrost in the Arctic, Yamal Peninsula. Cold Regions Science and Technology, 2022, vol. 196, p. 103507. Available at: https://doi.org/10.1016/j.coldregions.2022.103507.

6. Leibman M. O., Kizyakov A. I., Plekhanov A. V., Streletskaya I. D. New permafrost feature — deep crater in Central Yamal, West Siberia, Russia, as a response to local climate fluctuations. Geography, Environment, Sustainability, 2014, vol. 7, no. 4, pp. 68—80.

7. Leibman M. O., Kizyakov A. I. A new natural phenomenon in the permafrost zone. Nature, 2016, no. 2, pp. 15—24. (In Russian).

8. Leibman M. O., Dvornikov Yu. A., Streletskaya I. D. et al. Relationship of gas emission funnels with methane emissions in the north of Siberia. Actual problems of oil and gas, 2018, iss. 4 (23). DOI: 10.29222/ipng.2078-5712.2018-23.art60. (In Russian).

9. Epov M. I., Eltsov I. N., Potapov V. V. et al. Bermuda Triangle of Yamal. First-hand Science, 2014, vol. 59, no. 5, pp. 14—23. (In Russian).

10. Olenchenko V. V., Sinitsky A. I., Antonov E. Yu. et al. Results of geophysical researches of the area of new geological formation “Yamal Crater”. Earth’s Cryosphere, 2015, vol. 19, no. 4, pp. 94—106. (In Russian).

11. Zolkos S., Fiske G., Windholz T. et al. Detecting and Mapping Gas Emission Craters on the Yamal and Gydan Peninsulas, Western Siberia. Geosciences, 2021, vol. 11, iss. 1. Available at: https://doi.org/10.3390/geosciences11010021.

12. Schurmeier L. R., Brouwer G. E., Fagents S. A. Formation of the Siberian Yamal gas emission crater via accumulation and explosive release of gas within permafrost. Permafrost and Periglac Process, 2023, vol. 35, pp. 33—45. DOI: 10.1002/ppp.2211.

13. Morgado A. M. O., Rocha L. A. M., Cartwright J. H. E., Cardoso S. S. S. Osmos drives explosions and methane release in Siberian permafrost. Geophysical Research Letters, 2024, vol. 51, iss. 18, p. e2024GL108987. Available at: https://doi.org/10.1029/2024GL108987.

14. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A. Digital technologies for remote detection and monitoring of the development of heaving mounds and craters of catastrophic gas blowouts in the Arctic. Arctic: Ecology and Economy, 2020, no. 4 (40), pp. 90—105. DOI: 10.25283/2223-4594-2020-4-90-105. (In Russian).

15. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N. Monitoring of the Mordyyakha gas explosion object development on Yamal on the basis of Earth remote sensing data. Arctic: Ecology and Economy, 2022, vol. 12, no. 4, pp. 513—523. DOI: 10.25283/2223-4594-2022-4-513-523. (In Russian).

16. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Development monitoring of the C22 gas blowout Doublet object on Yamal peninsula using remote sensing data. Arctic: Ecology and Economy, 2024, vol. 14, no. 3, pp. 320—333. DOI: 10.25283/2223-4594-2024-3-320-333. (In Russian).

17. On the state and protection of the environment of the Russian Federation in 2020. State report. Moscow, Ministry of Natural Resources of Russia; Lomonosov Moscow State University, 2021, 864 p. (In Russian).

18. Skorobogatov V. A., Stroganov L. V., Kopeev V. D. Geological structure and gas and oil content of Yamal. Moscow, LLC “Nedra-Business Center”, 2003, 352 p. (In Russian).

19. Cryosphere of oil and gas condensate fields of the Yamal Peninsula: Monograph. Vol. 2. Cryosphere of the Bovanenkovo oil and condensate field. Under the general direction. Eds. Yu. B. Badu, N. A. Gafarova, E. E. Podborny. Moscow, Gazprom Expo LLC, 2013, 421 p. (In Russian).

20. Golovnev A. V., Lezova S. V., Abramov I. V. et al. Ethno-expertise on Yamal: Nenets routs and gas fields. Ekaterinburg, ABM Press, 2014, 232 p. Available at: https://ethnobs.ru/Ethnoexpertiza_na_Yamale.pdf. (In Russian).

21. Porter C., Howat I., Noh M.-J. et al. ArcticDEM — Strips, Version 4.1. 2022, Harvard Dataverse, V1. Available at: https://doi.org/10.7910/DVN/C98DVS.

22. Porter C., Howat I., Noh M.-J. et al. ArcticDEM — Mosaics, Version 4.1. 2023, Harvard Dataverse, V1. Available at: https://doi.org/10.7910/DVN/3VDC4W.

23. Quadcopter DJI Mavic Pro Platinum. Available at: https://www.geo-spektr.ru/bespilotnye-letatelnye-apparaty/kvadrokoptery/dji/DJI-Mavic-Pro-Platinum.html. (In Russian).

24. Agisoft Metashape User Manual Professional Edition, Version 2.0. Agisoft LLC, 2023, 253 p. Available at: https://www.agisoft.com/pdf/metashape-pro_2_0_ru.pdf.

25. Pix4Dmapper. The leading photogrammetry software for professional drone mapping. Available at: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/.

26. ArcGIS. Esri’s enterprise-grade geospatial platform. Available at: https://www.esri.com/ru-ru/arcgis/geospatial-platform/overview. (In Russian).

27. Kritsuk L. N. Underground ice of Western Siberia. Moscow, Scientific world, 2010, 352 p. (In Russian).

28. Badu Yu. B., Trofimov V. T., Vasilchuk Yu. K. Basic patterns of distribution and types of stratal deposits of underground ice in the northern part of the West Siberian Plate. Formative ice of the permafrost zone. Yakutsk, IM SO AN USSR, 1982, pp. 13—24. (In Russian).

29. Badu Yu. B. Cryogenic Strata of Gas-Bearing Structures in Yamal. On the Influence of Gas Deposits on the Formation and Development of Cryogenic Strata. Moscow, Scientific world, 2018, 232 p. (In Russian).

30. Chuvilin E. M., Perlova E. V., Baranov Yu. B. et al. Structure and properties of cryolithozone rocks in the southern part of the Bovanenkovo gas condensate field. Moscow, GEOS, 2007, 137 p. (In Russian).

31. Yakushev V. S. Natural Gas and Gas Hydrates in Cryolithozone. Moscow, VNIIGAZ, 2009, 192 p. (In Russian).

32. Perlova E. V., Miklyaeva E. S., Leonov S. A. et al. Gas hydrates of the Yamal Peninsula and the adjacent shelf of the Kara Sea as a complicating factor in the development of the region. News of gas science, 2017, no. 3 (31), pp. 255—262. (In Russian).

33. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Explosive degassing of the Earth in the north of Western Siberia: land and coastal parts of the Kara Sea. Arctic: Ecology and Economy, 2025, vol. 15, no. 2, pp. 162—176. DOI: 10.25283/2223-4594-2025-2-162-176. (In Russian).

34. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Remote detection of areas of surface gas manifestations and gas emissions in the Arctic: Yamal Peninsula. Arctic: Ecology and Economy, 2016, no. 3 (23), pp. 4—13. (In Russian).

35. Mackay J. R. Growth of Ibyuk Pingo, Western Arctic Coast, Canada, and some implications for environmental reconstructions. Quaternary Research, 1986, vol. 26, iss. 1, pp. 68—80.

36. Mackay J. R. Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study. Géographie physique et Quaternaire, 1998, vol. 52, no. 3, pp. 1—53.

37. Loganov Yu. D., Sobolevskii V. V., Simonov V. M. Open fountains and dealing with them. Handbook. Moscow, Nedra, 1991, 189 p. (In Russian).

38. Bogoyavlensky V.  I., Sizov O. S., Mazharov A. V. et al. Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula. Arctic: Ecology and Economy, 2019, no. 1 (33), pp. 88—105. DOI: 10.25283/2223-4594-2019-1-88-105. (In Russian).

39. Bogoyavlensky V. I. Gas-hydrodynamics in the Arctic craters of gas blowout. Arctic: Ecology and Economy, 2018, no. 1 (29), ðð. 48—55. DOI: 10.25283/2223-4594-2018-1-48-55. (In Russian).

40. Edelstein K. K., Alabyan A. M., Gorin S. L., Popryadukhin A. A. Hydrological and hydrochemical features of the largest lakes of the Yamal Peninsula. Transactions of the Karelian Scientific Center of the Russian Academy of Sciences, 2017, no. 10, pp. 3—16. Available at: https://doi.org/10.17076/lim571. (In Russian).

41. Kruglikov N. M., Kuzin I. L. Gas emissions on the Urengoy field. Tr. ZapSibNIGNI, 1973, vol. 37, pp. 96—106. (In Russian).

42. Brushkov A. V., Zhdaneev O. V., Frolov K. N. Fundamentals of Permafrost Science. Moscow, Academic Project, 2024, 190 p.

43. Bondur V., Chimitdorzhiev T., Dmitriev A. À Step-Wise Workflow for SAR Remote Sensing of Perennial Heaving Mound/Crater on the Yamal Peninsula, Western Siberia. Remote Sensing, 2023, no. 15, p. 281. Available at: https://doi.org/10.3390/rs15010281.

44. Decree of the President of the Russian Federation “On approval of priority areas of scientific and technological development and the list of the most important science-intensive technologies” of June 18, 2024, no. 529. Available at: https://doi.org/10.3390/rs15010281. (In Russian).


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594