Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 14, No. 3, 2024 » Development monitoring of the C22 gas blowout Doublet object on Yamal peninsula using remote sensing data

DEVELOPMENT MONITORING OF THE C22 GAS BLOWOUT DOUBLET OBJECT ON YAMAL PENINSULA USING REMOTE SENSING DATA

JOURNAL: Volume 14, No. 3, 2024, p. 320-333

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A.

ORGANIZATIONS: Oil and Gas Research Institute of RAS

DOI: 10.25283/2223-4594-2024-3-320-333

UDC: 502.171, 504.4, 504.7, 553.981.2

The article was received on: 11.07.2024

Keywords: Bovanenkovo field, gas blowout (emission), remote sensing of the Earth, crater, Yamal peninsula, permafrost, digital elevation model (DEM), ArcticDEM, perennial heaving mounds (PHM)

Bibliographic description: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A. Development monitoring of the C22 gas blowout Doublet object on Yamal peninsula using remote sensing data. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 3, pp. 320-333. DOI: 10.25283/2223-4594-2024-3-320-333. (In Russian).


Abstract:

The paper presents a comprehensive study of the C22 gas blowout Doublet object formed in 2023 in the central part of Yamal peninsula carried out with the use of remote sensing (RS) data and unmanned aerial vehicle (UAV). The object is situated 12.7 km south of the Bovanenkovo field. The uniqueness of the C22 crater lies in its location — 230 m from a similar, widely-known C2 object exploded in 2012, which is why the C22 object is named ‘Doublet’. Based on RS data the researchers have determined that within August 23 and September 3, 2023 the C22 permafrost heaving mound (PHM) exploded. According to ArcticDEM data for the period 2011-2023, the features of changes in the size of C22 PHM have been studied, including an abnormally high average growth rate of 44 cm/year three years before its explosion, which can serve as one of the criteria for identifying explosive PHM objects. The UAV data of May 14, 2024 has resulted in building a 3D model, which displays a partially snow-covered cavity in a ground ice massif. The depth of the cavity from the crater parapet is at least 28.5 m, the diameter of the crater neck is about 13 m. In the lower part, the cavity widens to 26 m and additionally extends by at least 8 m in the NNW direction at an azimuth of about 341°, which is consistent with the direction of the faults of the Bovanenkovo field identified by seismic exploration data. The bottom of the cavity has an elliptical shape with the size from 26×33 m to 26×41 m. The study is interdisciplinary and is included in the list of critical technologies for the prevention and reduction of risks of natural and man-made emergencies.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences (OGRI RAS) on the topic “Improving the efficiency and environmental safety of the oil and gas resources development in the Arctic and Subarctic zones of the Earth in a changing climate” (No. 122022800264-9).

References:

1. Bogoyavlensky V. I. The threat of catastrophic gas blowouts from the Arctic cryolithozone. Yamal craters. Oil and Drilling, 2014, no. 9, pp. 13—18. (In Russian).

2. Bogoyavlensky V. I. Arctic and the World Ocean: current state, perspectives and challenges of hydrocarbon production. Trudy Vol’nogo ekonomicheskogo obshchestva, 2014, vol. 182, no. 3, pp. 12—175. (In Russian).

3. Epov M. I., Eltsov I. N., Potapov V. V. et al. Bermuda Triangle of Yamal. First-hand Science, 2014, vol. 59, no. 5, pp. 14—23. (In Russian).

4. Leibman M. O., Kizyakov A. I., Plekhanov A. V., Streletskaya I. D. New permafrost feature — deep crater in Central Yamal, West Siberia, Russia, as a response to local climate fluctuations. Geography, Environment, Sustainability, 2014, vol. 7, no. 4, pp. 68—80.

5. Leibman M.O., Kizyakov A.I. A new natural phenomenon in the permafrost zone. Nature, 2016, no. 2, pp. 15—24. (In Russian).

6. Laverov N. P., Bogoyavlensky V. I., Bogoyavlensky I. V. Fundamental aspects of rational development of oil and gas resources in the Arctic and Russian shelf: strategy, prospects and challenges. Arctic: Ecology and Economy, 2016, no. 2 (22), pp. 4—13. (In Russian).

7. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Remote detection of areas of surface gas manifestations and gas emissions in the Arctic: Yamal Peninsula. Arctic: Ecology and Economy, 2016, no. 3 (23), pp. 4—13. (In Russian).

8. Bogoyavlensky V. I., Garagash I. A. Substantiation of the process of formation of gas emission craters in the Arctic by mathematical modeling. Arctic: Ecology and Economy, 2015, no. 3 (19), pp. 12—17. (In Russian).

9. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Results of aerial, space and field investigations of large gas blowouts near Bovanenkovo field on Yamal peninsula. Arctic: Ecology and Economy, 2017, no. 3 (27), ðð. 4—17. (In Russian).

10. Bogoyavlensky V.  I. Gas-hydrodynamics in the Arctic craters of gas blowout. Arctic: Ecology and Economy, 2018, no. 1 (29), ðð.  48—55. DOI: 10.25283/2223-4594-2018-1-48-55. (In Russian).

11. Bogoyavlensky V. I., Sizov O. S., Mazharov A. V., Bogo­yavlensky I. V. et al. Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas emission on the Yamal Peninsula. Arctic: Ecology and Economy, 2019, no. 1 (33), pp. 80—105. DOI: 10.25283/2223-4594-2019-1-88-105. (In Russian).

12. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A. Digital technologies for remote detection and monitoring of the development of heaving mounds and craters of catastrophic gas blowouts in the Arctic. Arctic: Ecology and Economy, 2020, no. 4 (40), pp. 90—105. DOI: 10.25283/2223-4594-2020-4-90-105. (In Russian).

13. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Russian Mining Industry, 2020, no. 1 (149), pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian).

14. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arctic: Ecology and Economy, 2021, vol. 11, no. 1, pp. 51—66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian).

15. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N. Catastrophic gas blowout in 2020 on the Yamal Peninsula in the Arctic. Results of comprehensive analysis of aerospace RS data. Arctic: Ecology and Economy, 2021, vol. 11, no. 3, pp. 362—374. DOI: 10.25283/2223-4594-2021-3-362-374. (In Russian).

16. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences, 2021, 11, 71. p. 20. Available at: https://doi.org/10.3390/geosciences11020071.

17. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N. Monitoring of the Mordyyakha gas explosion object development on Yamal on the basis of Earth remote sensing data. Arctic: Ecology and Economy, 2021, vol. 12, no. 4, pp. 513—523. DOI: 10.25283/2223-4594-2022-4-513-523. (In Russian).

18. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. Permanent Gas Emission from the Seyakha Crater of Gas Blowout, Yamal Peninsula, Russian Arctic. Energies, 2021, 14, p. 5345. Available at: https://doi.org/10.3390/en14175345.

19. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. Seyakha catastrophic blowout and explosion of gas from the permafrost in the Arctic, Yamal Peninsula. Cold Regions Science and Technology, 2022, vol. 196, p. 103507. Available at: https://doi.org/10.1016/j.coldregions.2022.103507.

20. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Explosive degassing of the Earth on the Yamal Peninsula and the adjacent Kara Sea. Arctic: Ecology and Economy, 2024, vol. 14, no. 2, pp. 177—191. DOI: 10.25283/2223-4594-2024-2-177-191. (In Russian).

21. Kritsuk L. N. Underground ice of Western Siberia. Moscow, Scientific world, 2010, 352 p. (In Russian).

22. Cryosphere of oil and gas condensate fields of the Yamal Peninsula: Monograph. In 3 vol. Vol. 2. Cryosphere of the Bovanenkovo oil and condensate field. Under the general direction. Eds. Yu. B. Badu, N. A. Gafarova, E. E. Podborny. Moscow, Gazprom Expo LLC, 2013. 421 p. (In Russian).

23. Badu Yu. B., Trofimov V. T., Vasilchuk Yu. K. Basic patterns of distribution and types of stratal deposits of underground ice in the northern part of the West Siberian Plate. Formative ice of the permafrost zone. Yakutsk, IM SO AN USSR, 1982, pp. 13—24. (In Russian).

24. Badu Yu. B. Cryogenic Strata of Gas-Bearing Structures in Yamal. On the Influence of Gas Deposits on the Formation and Development of Cryogenic Strata. Moscow, Scientific world, 2018, 232 p. (In Russian).

25. Chuvilin E. M., Perlova E. V., Baranov Yu. B. et al. Structure and properties of cryolithozone rocks in the southern part of the Bovanenkovo gas condensate field. Moscow, GEOS, 2007, 137 p. (In Russian).

26. Yakushev V. S. Natural Gas and Gas Hydrates in Cryolithozone. Moscow, VNIIGAZ, 2009, 192 p. (In Russian).

27. Perlova E. V., Miklyaeva E. S., Leonov S. A. et al. Gas hydrates of the Yamal Peninsula and the adjacent shelf of the Kara Sea as a complicating factor in the development of the region. News of gas science, 2017, no. 3 (31), pp. 255—262. (In Russian).

28. Kizyakov A., Khomutov A., Zimin M. et al. Microrelief Associated with Gas Emission Craters: Remote-Sensing and Field-Based Study. Remote Sens., 2018, 10, p. 677. DOI: 10.3390/rs10050677.

29. Porter C., Howat I., Noh M.-J. et al. ArcticDEM — Strips, Version 4.1. 2022, Harvard Dataverse, V1. Available at: https://doi.org/10.7910/DVN/C98DVS.

30. Porter C., Howat I., Noh M.-J. et al. ArcticDEM — Mosaics, Version 4.1. 2023, Harvard Dataverse, V1. Available at: https://doi.org/10.7910/DVN/3VDC4W.

31. Polyakova E. V., Kutinov Yu. G., Mineev A. L., Chistova Z. B. Analysis of the possibility of using digital terrain models ASTER GDEM v2 and ArcticDEM for research of the Arctic territories of Russia. Modern problems of remote sensing of the Earth from space, 2020, vol. 17, no. 7, pp. 117—127. DOI: 10.21046/2070-7401-2020-17-7-117-127. (In Russian).

32. Ultee L., Meyer C., Minchew B. Tensile strength of glacial ice deduced from observations of the 2015 eastern Skaftá cauldron collapse, Vatnajökull ice cap, Iceland. J. of Glaciology, 2020, 66 (260), pp. 1024—1033. Available at: https://doi.org/10.1017/jog.2020.65.

33. Agisoft Metashape User Manual Professional Edition, Version 2.0. Agisoft LLC, 2023, 253 p. Available at: https://www.agisoft.com/pdf/metashape-pro_2_0_ru.pdf.

34. Skorobogatov V. A., Stroganov L. V., Kopeev V. D. Geological structure and gas and oil content of Yamal. Moscow, LLC “Nedra-Business Center”, 2003, 352 p. (In Russian).

35. Vasilchuk Yu. K., Budantseva N. A., Vasilchuk A. K. et al. Formative ice in Holocene deposits of the north of Western Siberia. Cryosphere of the Earth, 2016, vol. 20, no. 1, pp. 36—50. (In Russian).

36. Mackay J. R. Growth of Ibyuk Pingo, Western Arctic Coast, Canada, and some implications for environmental reconstructions. Quaternary Research, 1986, vol. 26, iss. 1, pp. 68—80.

37. Mackay J. R. Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study. Géographie physique et Quaternaire, 1998, vol. 52, no. 3, pp. 1—53.

38. Bondur V. G., Chimitdorzhiev T. N., Kirbizhekova I. I., Dmitriev A. V. Radar Detection of Anomalous Dynamics of Perennial Heaving Mounds from the Example of the Yamal Mound/Crater in 2020. Doklady Earth Sciences, 2022, vol. 506, no. 1, pp. 654—660. DOI: 10.1134/S1028334X22700015. (In Russian).

39. Odintsev V. N., Trofimov V. A., Filippov Yu. A., Shipovskii I. E. Geomechanical model of formation of sinkholes on ground surface in the permafrost zone. MIAB. Mining Inf. Anal. Bull., 2021, no. 12-1, pp. 159—166. DOI: 10.25018/0236_1493_2021_121_0_159. (In Russian).

40. Decree of the President of the Russian Federation “On approval of priority areas of scientific and technological development and the list of the most important science-intensive technologies” of June 18, 2024, no. 529. (In Russian).


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594