Home Rubrics of the Journal Author Index Index Сompany directory Article Index
Arctic: ecology and economy
ISSN 2223-4594
Home » Archive of journals » Issue 2(30) 2018 » Accumulation of polycyclic aromatic hydrocarbons in plants of tundra affected by thermal power station in the vicinities of Vorkuta


JOURNAL: 2018, №2(30), p. 18-30

RUBRIC: Ecology

AUTHORS: Yakovleva E.V., Gabov D.N.

ORGANIZATIONS: Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2018-2-18-30

UDC: [504.43+504.73].054:547.912

The article was received on: 27.12.2017

Keywords: bioaccumulation, lichens, surface pollution, polycyclic aromatic hydrocarbons, soil, plants, thermal power station, southern tundra

Bibliographic description: Yakovleva E.V., Gabov D.N. Accumulation of polycyclic aromatic hydrocarbons in plants of tundra affected by thermal power station in the vicinities of Vorkuta. Arctic: ecology and economy, 2018, no. 2(30), pp. 18-30. DOI: 10.25283/2223-4594-2018-2-18-30. (In Russian).


Polycyclic aromatic hydrocarbons PAH content was studied in organogenic horizons of surface gley soils, lichens and vascular plants from lower vegetation layer in the southern tundra. Soils and plants were sampled both from the control site and from the sites established at distances 0,5; 1,0 and 1,5 km from thermal power station. Ultrasound-assisted extraction was used to analyze surface pollution. In order to reach full PAH extraction from soils and plants, we used the system of fast extraction by solvents ASE-350 (Dionex Corporation, USA). The aim of our research was to investigate PAH accumulation in tundra communities impacted by coal combustion. The total PAH content in soil at the contaminated sites exceeded background values by 3-3,5 times. Changes in PAH content in soil with the distance peaked at the 1 km distance. High correlation was found between PAH content in soil organogenic horizons, lichens and plants. PAHs were mostly presented by low molecular structures. Mosses and lichens absorbed PAH from the surface. Vaccinium uliginosum showed lower PAH accumulation capacity. For all the species under study, we found decrease in PAH accumulation at the maximal total PAH content level. The highest bioaccumulation capacity was revealed for Pleurozium schreberi, the lowest — for Vaccinium uliginosum. PAH content in plants decreased with the distance from the power station. In Peltigera sp., the highest accumulation rate was found at distance 0,5 km, in Pleurozium schreberi and Vaccinium uliginosum — at distance 1 km from the power station. The total mass fraction of PAH in Peltigera sp. and Pleurozium schreberi at area affected by the power station was 2-3 and 3-5 times higher than the control values. In Vaccinium uliginosum, the excesses under the background values were up to 2 times. Pleurozium schreberi may be used as bioindicator due to its wide distribution area, high PAH accumulation capacity and high correlations with PAH changes in soil. PAH content in dead parts of Pleurozium schreberi slightly exceeded the living one. For Vaccinium uliginosum, the rate of PAH accumulation was higher in leaves than in stems and roots.

  1. Sushkova S. N., Minkina T. M., Mandzhieva S. S., Tyurina I. G., Vasil’eva G. K., Kızılkaya R. Monitoring of Benzo[α]pyrene Content in Soils Affected by the Long-Term Technogenic Contamination. Eurasian Soil Science, 2017, vol. 50, no. 1, рр. 95—105.
  2. Ribeiro J., Silva T. F., Mendonсa Filho J. G., Flores D. Fly ash from coal combustion — An environmental source of organic compounds. Applied Geochemistry, 2014, no. 44, рр. 103—110.
  3. Yakovleva Е. V., Beznosikov V. A., Kondratenok B. M., Khomichenko A. A. Genotoxic effects in Tradescantia plants (clon 02) induced by benz(a)pirene. Contemporary problems of ecology, 2011, no. 6, рр. 594—599.
  4. Liu S., Liu Q., Ostbye T. Levels and risk factors for urinary metabolites of polycyclic aromatic hydrocarbons in children living in Chongqing, China. Science of the total environment. 2017, vol. 598, рр. 553—561.
  5. Li H., Liu G., Cao Y. Content and Distribution of Trace Elements and Polycyclic Aromatic Hydrocarbons in Fly Ash from a Coal-Fired CHP Plant. Aerosol and Air Quality Research, 2014, no. 14, рр. 1179—1188.
  6. Sahu S. K., Bhangare R. C., Ajmal P. Y., Sharma S., Pandit G. G., Puranik V. D. Characterization and quantification of persistent organic pollutants in fly ash from coal fueled thermal power stations in India. Microchemical J., 2009, no. 92, рр. 92—96.
  7. Verma S. K., Masto R. E., Gautam S., Choudhury D. P., Ram L. C., Maiti S. K., Maity S. Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 2015, vol. 162, рр. 138—147.
  8. Kargar N., Matin G., Matin A. A., Buyukisik H. B. Biomonitoring, status and source risk assessment of polycyclic aromatic hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis. Chemosphere, 2017, vol. 186, рр. 140—150.
  9. Lankin A. V., Kreslavski V. D., Zharmukhamedov S. K., Allakhverdiev S. I., Khudyakova A. Y. Effect of Naphthalene on Photosystem 2 Photochemical Activity of Pea Plants. Biochemistry, 2014, vol. 79, no. 11, рр. 1216—1225.
  10. Bargagli R. Trace elements in terrestrial plants: an ecophysiological approach to biomonitoring and biorecovery. Berlin, Springer-Verlag, 1998, 324 p.
  11. Muir D. C. G., Segstro M. D., Welbourn P. M., Toom D., Eisenreich S. J., MacDonald C. R., Whelpdale D. M. Patterns of accumulation of airborne organochlorine contaminants in lichens from the Upper Great Lakes region of Ontario. Environ. Sci. Technol, 1993, vol. 27, no. 6, рр. 1201—1210.
  12. Migaszewski Z. M. Determining organic compounds ratios in soils and vegetation of the Holy Cross Mts, Poland. Water, Air and Soil Pollution, 1999, vol. 111, no. 1—4, рр. 123—138.
  13. Wu Q., Wang X., Zhou Q. Biomonitoring persistent organic pollutants in the atmosphere with mosses: Performance and application. Environment International, 2014, no. 66, рр. 28—37.
  14. Zhang Y. F., Shotyk W., Zaccone C., Noernberg T., Pelletier R., Bicalho B., Froese D. G., Davies L., Martin J. W. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region. Environmental science & technology, 2016, vol. 50, no. 4, рр. 1711—1720.
  15. Iodice P., Adamo P., Capozzi F. Di Palma A., Senatore A., Spagnuolo V., Giordano S. Air pollution monitoring using emission inventories combined with the moss bag approach. Science of the total environment, 2016, vol. 541, рр. 1410—1419.
  16. Vingiani S., De Nicola F., Purvis W. O., Concha-Grana E., Muniategui-Lorenzo S., Lopez-Mahia P., Giordano S., Adamo P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: a Case Study in the Cities of Naples and London. Water air and soil pollution. 2015, vol. 226, no. 8, р. 240.
  17. Foan L., Domercq M., Bermejo R., Santamaria J. M., Simon V. Mosses as an integrating tool for monitoring PAH atmospheric deposition: Comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study. Chemosphere, 2015, vol. 119, рр. 452—458.
  18. De Nicola F., Spagnuolo V., Baldantoni D., Sessa L., Alfani A., Bargagli R., Monaci F., Terracciano S., Giordano S. Improved biomonitoring of airborne contaminants by combined use of holm oak leaves and epiphytic moss. Chemosphere, 2013, no. 92, рр. 1224—1230.
  19. Demin B. N., Graevskiy A. P., Demeshkin A. S., Vlasov S. V. Zagryaznenie pochvenno-rastitel’nogo kompleksa v okrestnostyakh rudnika “Barentsburg” politsiklicheskimi aromaticheskimi uglevodorodami. [Pollution of soil and vegetation complex in vicinities of Barentsburg mining by polycyclic aromatic hydrocarbons]. Arktika: ekologiya i ekonomika, 2012, no. 3 (7), рр. 62—73. (In Russian).
  20. Rodin, L. E. Remtsov N. P., Bazilevich N. I. Metodicheskie ukazaniya k izucheniyu dinamiki i biologicheskogo krugovorota v fitotsenozakh. [Methodological Guidelines on the Study of Dynamics of Biological Cycling in Phytocenoses]. Leningrad, Nauka, 1968, 143 р. (In Russian)
  21. Gorshkov A. G., Mikhaylova T. A., Berezhnaya N. S., Vereshchagin A. L. Nakoplenie politsiklicheskikh aromaticheskikh uglevodorodov v khvoe sosny obyknovennoy na territorii Pribaykal’ya. [Accumulation of polycyclic aromatic hydrocarbons in needles of Scots pine in Cis-Baikal region]. Lesovedenie, 2008, no. 2, рр. 21—26. (In Russian)
  22. Yakovleva E. V., Gabov D. N., Beznosikov V. A., Kondratenok B. M. Polycyclic Aromatic Hydrocarbons in Soils and Lower-Layer Plants of the Southern Shrub Tundra under Technogenic Conditions. Eurasian Soil Science, 2014, vol. 47. no. 6, рр. 562—572.
  23. Yang B., Liu S., Liu Y., Li X., Lin X., Liu M., Liu X. PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China. Science of the Total Environment, 2017, vol. 574, рр. 358—368.
  24. Yakovleva E. V., Gabov D. N., Beznosikov V. A., Kondratenok B. M. Accumulation of Polycyclic Aromatic Hydrocarbons in Soils and Plants of the Tundra Zone under the Impact of Coal-Mining Industry. Eurasian Soil Science, 2016, vol. 49, no. 11, рр. 1319—1328.
  25. Tavera Busso I., Tames F., Silva J. A., Ratola N., Carreras H. Biomonitoring levels and trends of PAHs and synthetic musks associated with land use in urban environments. Science of the Total Environment, 2017, vol. 618, рр. 93—100.
  26. Vane C. H., Rawlins B. G., Kim A. W., Moss-Hayes V., Kendrick C. P., Leng M. J. Sedimentary transport and fate of polycyclic aromatic hydrocarbons (PAH) from managed burning of moorland vegetation on a blanket peat, South Yorkshire, UK. Science of the Total Environment, 2013, vol. 449, рр. 81—94.
  27. Rovinskiy F. Ya., Teplitskaya T. A., Alekseeva T. A. Fonovyy monitoring politsiklicheskikh aromaticheskikh uglevodorodov. [Monitoring of polycyclic aromatic hydrocarbons]. Leningrad, Gidrometeoizdat, 1988, 224 p. (In Russian).
  28. Gennadiev A. N., Zhidkin A. P., Pikovskiy Yu. I., Kovach R. G., Koshovskiy T. S., Khlynina N. I. Hydrocarbon status of soils under atmospheric pollution from a local industrial source. Eurasian Soil Science, 2016, vol. 49, no. 9, рр. 1003—1012.

Download »

© 2011-2020 Arctic: ecology and economy
DOI 10.25283/2223-4594