| ||||
| ||||
Home » Archive of journals » Volume 13, No. 1, 2023 » Oceanic crust, transregional shear zones and the Amerasian microplate in the cretaceous-cenozoic geodynamics of ocean formation in the Arctic OCEANIC CRUST, TRANSREGIONAL SHEAR ZONES AND THE AMERASIAN MICROPLATE IN THE CRETACEOUS-CENOZOIC GEODYNAMICS OF OCEAN FORMATION IN THE ARCTICJOURNAL: Volume 13, No. 1, 2023, p. 4-17HEADING: Research activities in the Arctic AUTHORS: Shipilov, E.V. ORGANIZATIONS: Polar Geophysical Institute of the Kola Scientific Center of RAS DOI: 10.25283/2223-4594-2023-1-4-17 UDC: 551.242.11 The article was received on: 23.08.2022 Keywords: geodynamics, spreading, Arctic Ocean, oceanic crust, rifting, transregional strike-slip zones, Amerasian microplate Bibliographic description: Shipilov, E.V. Oceanic crust, transregional shear zones and the Amerasian microplate in the cretaceous-cenozoic geodynamics of ocean formation in the Arctic. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2023, vol. 13, no. 1, pp. 4-17. DOI: 10.25283/2223-4594-2023-1-4-17. (In Russian). Abstract: The author has reconstructed the structural-tectonic setting of the Late Cretaceous-Early Cenozoic stage of the geodynamic evolution of the Arctic Ocean. It is shown that the oceanic crust in the Eurasian and Canadian basins occupies a much smaller area than previously thought and was formed in both on blocks of the continental basement strongly stretched by Cretaceous rifting. Due to the processes, large and extended transregional shear zones were set in motion: the Chukchi-Canadian during the opening of the Canadian basin in the Early Cretaceous, and the continental marginal ones — Khatanga-Lomonosov and Northern Greenland-Canadian, the activation of shear movements in which is associated with the Late Cretaceous-Paleocene time, when the consistent formation of the Makarov and Eurasian basins took place. As a result new composite Amerasian microplate was detached and set in motion, which combined the blocks of Arctic Alaska, the Canadian Basin, the Chukchi Rise, the Alpha–Mendeleev Rise, the Podvodnikov and Makarov Basins, and the Lomonosov Ridge. The movement of the microplate along approximately parallel large shear zones at the edges of the Canadian Arctic and Siberian-Chukotka shelves was directed towards the Pacific subduction zone. The movement of the Amerasian microplate was accompanied by rifting and detachment of the Lomonosov Ridge from the Barents-Kara margin, opening of the Eurasian Basin in the rear of the ridge, and transform displacements — right-sided along the Khatanga-Lomonosov zone and left-sided along the North Greenland-Canadian fault zone. At the same time, as a result of the movement of the Amerasian microplate, the previously unified area of Cretaceous plateau basalts (HALIP) was broken, and the Central Arctic province of magmatism was separated and moved away from the Barents Sea province. Finance info: The work was prepared based on the implementation results of RFBR projects and their final stage on topic No. 18-05-70012 “Development of a geodynamic model for the evolution of the Arctic lithosphere in the Mesozoic-Cenozoic in connection with the scientific substantiation of Russia’s application to the UN Commission to establish the outer boundary of the continental shelf of the Russian Federation in the Arctic Ocean”, code “Resources of the Arctic”. References: 1. Lobkovsky L. I., Shipilov E. V., Kononov M. V. Geodynamic model of upper mantle convection and transformation of the Arctic lithosphere in the Mesozoic and Cenozoic. Izvestiya. Physics of the Solid Earth, 2013, vol. 49, no. 6, pp. 767—785. 2. Shipilov E. V., Lobkovsky L. I., Shkarubo S. I., Kirillova T. A. Tectono-Geodynamic Settings in the Conjugation Zone of the Lomonosov Ridge, Eurasian Basin, and Eurasian Continental Margin. Geotectonics, 2021, vol. 55, no. 5, pp. 655—675. 3. Shipilov E. V. Tectono-geodynamic evolution of Arctic continental margins during epochs of young ocean formation. Geotectonics, 2004, 38 (5), pp. 343—365. Available at: https://dx.doi.org/10.13140/RG.2.2.21459.22560. 4. Shipilov E. V., Kirillova T. A. Tectonics of the junction zone of the Eurasian Basin and the Lomonosov Ridge with the continental margin of Siberia. Proceedings of the Fersman Scientific Session of the GI KSC RAS, 2020, no. 17, pp. 563—567. Available at: https://doi.org/10.31241/FNS.2020.17.109. (In Russian). 5. Shipilov E. V. Late Mesozoic Magmatism and Cenozoic Tectonic Deformations of the Barents Sea Continental Margin: Effect on Hydrocarbon Potential Distribution. Geotectonics, 2015, vol. 49, no. 1, pp. 53—74. DOI: 10.1134/S0016852115010045. 6. Shipilov E. V. Basaltic magmatism and strike-slip tectonics in the Arctic margin of Eurasia: evidence for the early stage of geodynamic evolution of the Amerasia Basin. Russian Geology and Geophysics, 2016, vol. 57 (12), pp. 1668—1687. DOI: 10.15372/gig20161202. 7. Shipilov E. V., Karyakin Y. V. The Barents sea magmatic province: Geological-geophysical evidence and new 40Ar/39Ar dates. Doklady Earth Sciences, 2011, vol. 439, no. 1, pp. 955—960. DOI: 10.1134/S1028334X11070270. 8. Shipilov E. V., Yunov A. Yu. On the Genesis of Anticlinal Structures of Hydrocarbon Fields in the Eastern Part of the Barents Sea. Doklady Earth Sciences, 1995, vol. 342, no. 1, pp. 87—88. (In Russian). 9. Shreyder A. A. Linear magnetic anomalies of the Arctic Ocean. Okeanologiya, 2004, vol. 44, no. 5, pp. 768—777. (In Russian). 10. Chian D., Jackson H. R., Hutchinson D. R. et al. Distribution of crustal types in Canada Basin, Arctic Ocean. Tectonophysics, 2016, vol. 691, pp. 8—30. Available at: https://doi.org/10.1016/j.tecto.2016.01.038. 11. Dossing A., Gaina C., Jackson H. R., Andersen O. B. Cretaceous ocean formation in the High Arctic. Earth and Planetary Science Letters, 2020, vol. 551, Article 116552. Available at: https://doi.org/10.1016/ j.epsl.2020.116552. 12. Zhang T., Dyment J., Gao J. Y. Age of the Canada Basin, Arctic Ocean: indications from high-resolution magnetic data. Geophysical Research Letters, 2019, vol. 46 (23), pp. 13712—13721. Available at: https://doi.org/10.1029/2019GL085736. 13. Embry A. F. Crockerland — the northern source area for the Sverdrup Basin, Canadian Arctic Archipelago. Arctic Geology and Petroleum Potential. T. Vorren, E. Bergsager, O. DahlStamnes, E. Holter, B. Johansen, E. Lie, T. Lund (eds.). Norwegian Petroleum Society, Special Publication, 1993, vol. 2, pp. 205—216. Available at: https://doi.org/10.1016/B978-0-444-88943-0.50018-6. 14. Lane L. S. Tectonic Evolution of the Canadian Beaufort Sea — Mackenzie Delta Region: A Brief Review. Recorder CSEG (Canad. Soc. Explor. Geophys.), 2002, vol. 27, no. 2, pp. 1—9. 15. Grantz A., Hart P. E., Childers V. A. Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. Mem. Geol. Soc. Lond., 2011, vol. 35 (1), pp. 771—799. Available at: https://doi.org/10.1144/M35.50. 16. Døssing A., Gaina C., Brozena J. M. Building and breaking a large igneous province: An example from the High Arctic. Geophys. Res. Lett., 2017, vol. 44. pp. 6011—6019. DOI: 10.1002/2016GL072420. 17. Hutchinson D. R., Jackson H. R., Houseknecht D. W. et al. Significance of northeast-trending features in Canada Basin, Arctic Ocean. Geochem. Geophys. Geosyst., 2017, vol. 18, pp. 4156—4178. Available at: https://doi.org/10.1002/2017GC007099. 18. Gradstein F. M., Ogg J. G., Schmitz M. D. The Geologic Time Scale. G. M. Ogg (ed.). Oxford, UK, Elsevier, 2012. pp. 85—113. DOI: 10.1016/B978-0-444-59425-9.00005-6. 19. Malinverno A. J., Hildebrandt J. M.. Tominaga M., Channell J. E. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res., 2012, vol. 117, art. B06104. DOI: 10.1029/2012JB009260. 20. Shipilov E. V., Lobkovsky L. I. The Submeridional Strike Slip Zone in the Structure of the Chukchi Sea Continental Margin and the Mechanism of Opening of the Canada Oceanic Basin. Doklady Earth Sciences, 2014, vol. 455, pt. 1, pp. 238—242. DOI: 10.1134/S1028334X14030076. 21. Daragan-Sushchova L. A., Petrov O. V., Daragan-Sushchov Yu. I., Leontiev D. I., Saveliev I. N. The history of the formation of the Eurasian basin of the Arctic Ocean according to seismic data. Regional Geology and Metallogeny, 2020, no. 84, pp. 25—44. (In Russian). 22. Poselov V. A., Butsenko V. V., Kaminsky V. D., Zholondz S. M. Border of the Continental Margin of the Central Arctic Uplifts in Amundsen Basin in Siberia. Doklady Earth Sciences, 2020, vol. 493, no. 1, pp. 539—543. DOI: 10.1134/S1028334X20070156. 23. Jokat W., O’Connor J., Hauff F. et al. Ultraslow spreading and volcanism at the eastern end of Gakkel Ridge, Arctic Ocean. Geochemistry, Geophysics, Geosystems, 2019., vol. 20, pp. 6033—6050. Available at: https://doi.org/10.1029/2019GC008297. 24. Rekant P. V., Gusev E. A. The structure and history of the formation of the sedimentary cover of the rift zone of the Gakkel ridge (Arctic Ocean). Geologiya i geofizika, 2016, vol. 57. no. 9, pp. 1634—1640. DOI: 10.15372/GiG20160903. (In Russian). 25. Piskarev A., Elkina D. Giant caldera in the Arctic Ocean: Evidence of the catastrophic eruptive event. Scientific Reports, 2017, vol. 7, art. 46248. Available at: https://doi.org/10.1038/srep46248. 26. Silantyev S. A., Bogdanovskii O. G., Fedorov P. I., Karpenko S. F., Kostitsyn Yu. A. Intraplate magmatism of the De Long Islands: A response to the propagation of the ultraslow-spreading Gakkel Ridge into the passive continental margin in the Laptev Sea. Russian J. of Earth Sciences, 2004, vol. 6, no. 3, pp. 1—31. Available at: http://rjes.wdcb.ru/v06/tje04150/tje04150.htm. 27. Korago E. A., Evdokimov A. N., Stolbov N. M. Late Mesozoic and Cenozoic mafic magmatism in the northwest of the continental margin of Eurasia. St. Petersburg, VNIIOkeangeologiya, 2010, 174 p. (In Russian). 28. Shipilov E. V., Lobkovsky L. I. Tectono-Geodynamic Transformations of the Amerasian Basin Lithosphere in the Cenozoic. Doklady Earth Sciences, 2012, vol. 445, no. 2, pp. 979—985. DOI: 10.1134/S1028334X12080247. 29. Golovachev E. M., Shipilov E. V. Lineament Zones of Laptev sea. Izv. vyssh. ucheb. zavedenii. Geologiya i razvedka, 1986. no. 8, pp. 106—108. (In Russian). 30. Lobkovsky L. I., Kononov M. V., Shipilov E. V. Geodynamic causes of occurrence and termination of cenozoic shear deformations in the Khatanga-Lomonosov Fault zone (Arctic). Doklady Earth Sciences, 2020, vol. 492, no. 1, pp. 82—87. DOI: 10.31857/S2686739720050102. (In Russian). 31. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G. Permafrost, Gas Hydrates and Gas Seeps in the Central Part of the Laptev Sea. Doklady Earth Sciences, 2021, vol. 500, no. 1. pp. — 766—771. DOI: 10.1134/S1028334X2109004X. 32. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G. Heterogeneities in the Upper Part of the Section of the Sedimentary Cover of the East Siberian Sea: Gas Accumulations and Signs of Ice Gouging. Doklady Earth Sciences. 2022, vol. 505, pt. 1, pp. 411—415. 33. Dinkelman M. G., Kumar N., Helwig J. et al. Highlights of Petroleum and Crustal Framework of the Beaufort-Mackenzie Basin: Key Results from BeaufortSPAN East Phases I and II Surveys. Canadian Society of Exploration Geophysicists (CSEG). Recorder, 2008, vol. 33, no. 9, pp. 22—25. 34. Helwig J., Kumar N., Dinkelman M. G., Emmet P. Three segments of the Arctic Continental Margin, Beaufort Sea, Canada: Deep Seismic Profiles of Crustal Architecture: Abstract. GeoCanada, 2010, May 10—14, p. 4. Available at: https://doi.org/10.1144/M35.35. 35. McClelland W. C., Strauss J. V., Colpron M. et al. Taters versus sliders: Evidence for a long lived history of strike-slip displacement along the Canadian arctic transform system (CATS). GSA Today, 2021, vol. 31 (7), pp. 4—11. DOI: 10.1130/GSATG500A.1. 36. Laverov N. P., Lobkovsky L. I., Kononov M. V. et al. A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf. Geotectonics, 2013, vol. 47, no. 1, pp. 1—30. DOI: 10.1134/S0016852113010044. 37. Estrada S., Damaske D., Henjes-Kunst F. et al. Multistage Cretaceous magmatism in the northern coastal region of Ellesmere Island and its relation to the formation of Alpha Ridge — evidence from aeromagnetic, geochemical and geochronological data. Norwegian J. of Geology, 2016, vol. 96, pp. 1—31. Available at: http://dx.doi.org/10.17850/njg96-2-03. 38. Estrada S., Piepjohn K. Early Cretaceous magmatism and post-Early Cretaceous deformation on Ellef Ringnes Island, Canadian High Arctic, related to the formation of the Arctic Ocean. Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens. K. Piepjohn, J. V. Strauss, L. Reinhardt, W. C. McClelland (eds.). Geological Society of America. Special Paper 541, 2018, pp. 1—22. Available at: https://doi.org/10.1130/2018.2541(15). 39. Moore T. E., Box S. E. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska. Tectonophysics, 2016, vol. 691, pp. 133—170. Available at: https://doi.org/10.1016/J.TECTO.2016.06.025. 40. Richter M., Nebel O., Maas R. et al. An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Sci. Adv., 2020, vol. 6, art. eabb4340. DOI: 10.1126/sciadv.abb4340. 41. Yang A. Y., Langmuir C. H., Cai Y. et al. A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Nature Communications., 2021, vol. 12, art. 4757. Available at: https://doi.org/10.1038/s41467-021-25027-2. Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|