Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home Archive of journals Volume 12, No. 4, 2022 Monitoring of the Mordyyakha gas explosion object development on Yamal on the basis of Earth remote sensing data

MONITORING OF THE MORDYYAKHA GAS EXPLOSION OBJECT DEVELOPMENT ON YAMAL ON THE BASIS OF EARTH REMOTE SENSING DATA

JOURNAL: Volume 12, No. 4, 2022, p. 513-523

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A., Kargina, T.N.

ORGANIZATIONS: Oil and Gas Research Institute of RAS

DOI: 10.25283/2223-4594-2022-4-513-523

The article was received on: 30.09.2022

Keywords: permafrost rocks, gas blowout (emission), remote sensing of the Earth, crater, underground ice, perennial heaving mound (PHM), pingo, digital elevation model (DEM), ArcticDEM

Bibliographic description: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A., Kargina, T.N. Monitoring of the Mordyyakha gas explosion object development on Yamal on the basis of Earth remote sensing data. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2022, vol. 12, no. 4, pp. 513-523. DOI: 10.25283/2223-4594-2022-4-513-523. (In Russian).


Abstract:

The authors carried out a comprehensive study of the Mordyakh object C15 of a catastrophic gas blowout in 2017 using the Earth remote sensing (RS) data from space, including ArcticDEM digital 3D models. According to the remote sensing data, the researchers proved the rapid growth of the perennial heaving mound (PHM) C15 of about 1 m in height during 14.5 months from March 19, 2012 to June 6, 2013 and that in the next four years its growth rate was about 10 cm per year. They determined that in the period from June 8 to June 19, 2017, an explosion occurred in the arch of the PHM with the formation of a crater. As a result of photogrammetric processing of aerial images from a helicopter, the authors developed a highly detailed 3D model of the crater as of August 26, 2020. They recorded the scattering of frozen soil pieces up to a distance of 90 m, and calculated the approximate volume of the largest of them, which was about 40—50 m3. As a result of the research the authors confirmed the endogenous gas-dynamic mechanism of PHM growth followed by powerful blowout and gas explosions with the formation of giant craters. The results contribute to improving the safety of the operation of oil and gas facilities in the Arctic.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic Improving the efficiency and environmental safety of the oil and gas resources development in the Arctic and Subarctic zones of the Earth in a changing climate.

References:

1. Bogoyavlensky V. I. Arctic and the World Ocean: Current State, Perspectives and Challenges of Hydrocarbon Production. Tr. Vol’nogo ekon. obshchestva, 2014, vol. 182, no. 3, pp. 12—175. (In Russian).

2. Bogoyavlensky V. I. The threat of catastrophic gas blowouts from the Arctic cryolithozone. Yamal craters. Oil and Drilling, 2014, no. 9, pp. 13—18. (In Russian).

3. Bogoyavlensky V. I. The threat of catastrophic gas blowouts from the Arctic cryolithozone. Yamal and Taymyr craters. Pt. 2. Oil and Drilling, 2014, no. 10, pp. 4—8. (In Russian).

4. Bogoyavlensky V. Gas Blowouts on the Yamal and Gydan Peninsulas. GeoExPro [London], 2015, vol. 12, no. 5, . 74—78.

5. Bogoyavlensky V.I., Garagash I. A. Substantiation of the process of formation of gas ejection craters in the Arctic by mathematical modeling. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2015, no. 3 (19), pp. 12—17. (In Russian).

6. Leibman M. O., Plekhanov A. V. Yamal gas blowout crater: the results of preliminary examination. Kholod’OK: scientific-popular magazine, 2014, no. 2 (12), pp. 9—15. (In Russian).

7. Leibman M. O., Kizyakov A. I., Plekhanov A. V., Streletskaya I. D. New permafrost feature—Deep crater in Central Yamal, West Siberia, Russia, as a response to local climate fluctuations. Geogr. Environ. Sustain., 2014, 7, pp. 68—80.

8. Kizyakov A. I., Sonyushkin A. V., Leibman M. O. et al. Geomorphological conditions for the formation of a gas outburst funnel and the dynamics of this form in Central Yamal. Kriosfera Zemli, 2015, 2, pp. 15—25. (In Russian).

9. Olenchenko V. V., Sinitsky A. I., Antonov E. Yu., Eltsov I. N., Kushnarenko O. N., Plotnikov A. E., Potapov V. V., Epov M. I. Results of geophysical studies of the territory of the geological formation “Yamal crater”. Kriosfera Zemli, 2015, vol. 19, no. 4, p. 94—106. (In Russian).

10. Sizov O. S. Remote analysis of consequences of surface gas shows in the north of Western Siberia. Geomatika, 2015, no. 1, . 53—68. (In Russian).

11. Badu Yu. B. Cryogenic Strata of Gas-Bearing Structures in Yamal. On the Influence of Gas Deposits on the Formation and Development of Cryogenic Strata. Moscow, Nauchnyi mir, 2018, 232 p. (In Russian).

12. Kizyakov A., Khomutov A., Zimin M., Khairullin R., Babkina E., Dvornikov Y., Leibman M. Microrelief associated with gas emission craters: Remote-sensing and field-based study. Remote Sens., 2018, 10, 677.

13. Buldovicz S. N., Khilimonyuk V. Z., Bychkov A. Y. et al. Cryovolcanism on the earth: Origin of a spectacular crater in the Yamal Peninsula (Russia). Sci. Rep., 2018, 8, p. 13534.

14. Khimenkov . N., Sergeev D. O., Vlasov A. N. et al. Explosive processes in the permafrost zone as a new type of geocryological hazard. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya, 2019, no. 6, . 30—41. (In Russian).

15. Chuvilin E., Stanilovskaya J., Titovsky A. et al. A gas emission crater in the Erkuta River valley, Yamal Peninsula: characteristics and potential formation model. Geosciences, 2020, 10, p. 170.

16. Zolkos S., Fiske G., Windholz T., Duran G. et al. Detecting and Mapping Gas Emission Craters on the Yamal and Gydan Peninsulas, Western Siberia. Geosciences, 2021, 11, 21. Available at: https://doi.org/10.3390/geosciences11010021.

17. Bogoyavlensky V. I. Gas-hydrodynamics in the Arctic craters of gas blowout. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2018, no. 1 (29), . 48—55. DOI: 10.25283/2223-4594-2018-1-48-55. (In Russian).

18. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Russian Mining Industry, 2020, pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian).

19. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 1, pp. 51—66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian).

20. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kargina T., Chuvilin E., Bukhanov B., Umnikov A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences, 2021, 11, 71, 20 p. Available at: https://doi.org/10.3390/geosciences11020071.

21. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N. Catastrophic gas blowout in 2020 on the Yamal Peninsula in the Arctic. Results of comprehensive analysis of aerospace RS data. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 3, pp. 362—374. DOI: 10.25283/2223-4594-2021-3-362-374. (In Russian).

22. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A. Digital technologies for remote detection and monitoring of the development of heaving mounds and craters of catastrophic gas blowouts in the Arctic. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2020, no. 4 (40), . 90—105. DOI: 10.25283/2223-4594-2020-4-90-105. (In Russian).

23. Skorobogatov V. A., Stroganov L. V., Kopeev V. D. Geological structure and gas and oil content of Yamal. Moscow, LLC “Nedra-Business Center”, 2003, 352 p. (In Russian).

24. Polyakova I. D. Bogoyavlensky V. I. The Bazhenovo Formation as a Source of Economic Oils and Rich Gases in the Tithonian-Neocomian Section of the South Kara Region. Doklady Earth Sciences, 2011, vol. 440, no. 1, pp. 1270—1275.

25. Mackay J. R. Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long-term field study. Géographie physique et Quaternaire, 1998, vol. 52, no. 3, p. 271—323.

26. Dubikov G. I., Koreysha M. M. Injection fossil ice on the Yamal Peninsula. Proceedings of the Academy of Sciences of the USSR. Ser. geographer, 1964, no. 5, pp. 58—65. (In Russian).

27. Badu Yu. B., Trofimov V. T., Vasilchuk Yu. K. Main patterns of distribution and types of reservoir deposits of underground ice in the northern part of the West Siberian plate. Formation ice permafrost. Yakutsk, IM SO AN SSSR, 1982, pp. 13—24. (In Russian).

28. Vasilchuk Yu. K. Massive ice of Bovanenkovo Gas-condensate Field (the Central Yaval Peninsula). Engeneering Geology, 2010, September, pp. 48—65. (In Russian).

29. Streletskaya I. D., Ukraintseva N. G., Drozdov I. D. Late Pleistocene history reconstruction based on the massive ground ice origin in the Arctic coastal zone. Moscow, MGU, 2001. Available at: http://www.geogr.msu.ru/cafedra/crio/Tabular/.

30. Bogoyavlensky V. I., Sizov O. S., Mazharov A. V., Bogoyavlensky I. V., Nikonov R. A., Kishankov A. V., Kargina T. N. Earth degassing in the Arctic: Remote and field studies of the Seyakha catastrophic gas emission on the Yamal Peninsula. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2019, no. 1 (33), . 88—105. DOI: 10.25283/2223-4594-2019-1-88-105. (In Russian).

31. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kishankov A. Complex of geophysical studies of the Seyakha catastrophic gas blowout crater on the Yamal Peninsula, Russian Arctic. Geosciences, 2020, 10, 215. Available at: https://doi.org/10.3390/geosciences10060215.

32. Bogoyavlensky V. I. Innovative Technologies and Results of Studying Processes of Natural and Man-Made Degassing of the Earth in the Lithosphere-Cryosphere-Hydrosphere-Atmosphere System. Third International Conference on Geology of the Caspian Sea and Adjacent Areas (Baku, 2019). Baku, 2019, . 1—5. DOI: 10.3997/2214-4609.201952015.

33. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Sizov O., Kishankov A., Kargina T. Seyakha catastrophic gas blowout and explosion from the cryosphere of the Arctic Yamal Peninsula. Cold Regions Science and Technology, 2022, vol. 196, p. 103507. Available at: https://doi.org/10.1016/j.coldregions.2022.103507.

34. Porter C., Morin P., Howat I., Noh M., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K. et al. ArcticDEM. Harv. Dataverse 2018, 1. DOI: 10.7910/DVN/OHHUKH.

35. Agisoft Metashape User Manual Professional Edition, Version 1.6. Agisoft LLC, 2020, 172 p. Available at: www.agisoft.com/pdf/metashape-pro_1_6_en.pdf.

36. CORONA: America’s first satellite program. Ed. K. C. Ruffner. CIA. Washington, 1995, 362 p.


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594