Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594
RuEn
Advanced
Search
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home Archive of journals Issue 3(39) 2020 Geophysical model of the Earths crust, geodynamic conditions and prospects for the discovery of Pb-Zn deposits in the Russian Arctic

GEOPHYSICAL MODEL OF THE EARTHS CRUST, GEODYNAMIC CONDITIONS AND PROSPECTS FOR THE DISCOVERY OF PB-ZN DEPOSITS IN THE RUSSIAN ARCTIC

JOURNAL: 2020, 3(39), p. 87-98

HEADING: Study and development of nature resources of the Arctic

AUTHORS: Galyamov A.L., Volkov A.V., Lobanov K.V.

ORGANIZATIONS: Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS

DOI: 10.25283/2223-4594-2020-3-87-98

UDC: 553.44:553.061

The article was received on: 24.06.2020

Keywords: deposit, Russian Arctic zone, Mississippi Valley Type MVT, Sedimentary Exhalative SEDEX, forecast, Earh crust, deep structure, tectonic environment, Volcanic Massive Sulphide VMS), lead, zinc, geophysical model

Bibliographic description: Galyamov A.L., Volkov A.V., Lobanov K.V. Geophysical model of the Earths crust, geodynamic conditions and prospects for the discovery of Pb-Zn deposits in the Russian Arctic. Arctic: ecology and economy, 2020, no. 3(39), pp. 87-98. DOI: 10.25283/2223-4594-2020-3-87-98. (In Russian).


Abstract:

The article discusses the results of a comparative metallogenic GIS analysis based on GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) data that allows the use of elements of the deep crust structure as global features in forecast and prospecting models of Pb-Zn deposits. Through the GIS analysis the authors have identified the main global features: the spatial distribution of MVT-type deposits coincides with the asthenospheric uplifts of the MOHO discontinuity; deposits are confined to the medium-temperature region of the upper mantle and are controlled by deep deflections of the crust sedimentary layer, identified by seismic velocities; the VMS-type deposits, located mainly on a thin sedimentary crust, correlate with moderate thickness of the lower crust; the SEDEX-type deposits, which occupy an intermediate position between MVT and VMS, are controlled by thin and/or moderately thick sedimentary crust in the areas of rift development. The use of these global features in forecast and prospecting models is to identify new promising areas in the Russian Arctic zone for predicting new Pb-Zn deposits.
Keywords: Arctic zone of Russia, crust, deep structure, tectonic environment, deposit, MVT, SEDEX, VMS, lead, zinc, model, forecast, prospecting.


Finance info: This work was financially supported by the Russian Federal Property Fund (Grant No. 18-05-70001 Studying the geological and geodynamic conditions of the formation of large strategic metal deposits in the Arctic zone of Russia: conclusions for forecasting and prospecting for new deposits).

References:

1. Bortnikov N. S., Lobanov K. V., Volkov A. V., Galyamov A. L., Murashov K. Yu. Arkticheskie resursy tsvetnykh i blagorodnykh metallov v global’noi perspective. [Arctic resources of nonferrous and noble metals in global prospects]. Arktika: ekologiya i ekonomika, 2015, no. 1 (17), pp. 38—46. (In Russian).
2. Volkov A. V., Galyamov A. L., Belousov P. E., Vol’fson A. A. Primenenie kosmicheskikh tekhnologii v metallogenicheskom analize territorii Arkticheskoi zony Rossii. [Application of space technologies in metallogenetic analysis of the territory of the Arctic zone of Russia]. Arktika: ekologiya i ekonomika, 2020, no. 2 (38), pp. 77—85. DOI: 10.25283/2223-4594-2020-2-77-85. (In Russian).
3. Reguzzoni M., Sampietro D. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinform, 2015, vol. 35, pp. 31—43.
4. Klyuikov A. A. Novaya era v izuchenii gravitatsionnogo polya Zemli. [A new era in the study of the Earth’s gravitational field]. Nauch. tr. in-ta astronomii RAN, 2018, vol. 2, pp. 20—25. (In Russian).
5. Bassin C., Laske G., Masters G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 2000, 81, F897. Available at: http://igppweb.ucsd.edu/~gabi/crust2.html.
6. Bouman J., Ebbing J., Meekes S. et al. GOCE gravity gradient data for lithospheric modeling. Int. J. Appl. Earth Obs. Geoinform, 2015, vol. 35, pp. 16—30.
7. Cammarano F., Guerri M. Global thermal models of the lithosphere. Geophys. J. Int., 2017, vol. 210, pp. 56—72.
8. Laske G., Masters G. A Global Digital Map of Sediment Thickness. EOS Trans AGU. — 1997. — 78. — F483.
9. Belousov V. V., Pavlenkova N. I. Tipy zemnoi kory Evropy i Severnoi Atlantiki. [Types of the Earth’s crust of Europe and the North Atlantic]. Geotektonika, 1989, no. 3, pp. 3—14. (In Russian).
10. Kashubin S. N., Pavlenkova N. I., Petrov O. V., Mil’shtein E. D., Shokal’skii S. P., Erinchek Yu. M. Tipy zemnoi kory Tsirkumpolyarnoi Arktiki. [Types of the Earth’s crust of the Circumpolar Arctic]. Region. geologiya i metallogeniya, 2013, no. 55, pp. 5—20. (In Russian).
11. Lobanov K. V., Chicherov M. V., Chizhova I. A., Gornostaeva T. A., Sharov N. V. Glubinnoe stroenie i rudoobrazuyushchie sistemy Pechengskogo rudnogo raiona (Arkticheskaya zona Rossii). [Depth structure and ore-forming systems of the Pechenga ore region (Russian Arctic Zone)]. Arktika: ekologiya i ekonomika, 2019, no. 3 (35), pp. 107—122. DOI: 10.25283/2223-4594-2019-3-107-122. (In Russian).
12. Ruchkin G. V., Konkin V. D., Kudryavtseva N. G. Metallogenicheskie ryady mestorozhdenii tsvetnykh i blagorodnykh metallov v osnovnykh geotektonicheskikh obstanovkakh. [Metallogenic series of deposits of non-ferrous and noble metals in the main geotectonic environments]. Rudy i metally, 1997, no. 4, pp. 30. (In Russian).
13. Konkin V. D., Donets A. I., Ruchkin G. V. Mineralogo-geokhimicheskie tipy i regional’nye geologicheskie osobennosti stratiformnykh svintsovo-tsinkovykh mestorozhdenii v karbonatnykh tolshchakh. [Mineralogical and geochemical types and regional geological features of stratiform lead-zinc deposits in carbonate strata]. Otechestv. geologiya, 2018, no. 4, pp. 52—62. DOI: 10.24411/0869-7175-2018-10005. (In Russian).
14. Pirajno F. Hydrothermal Processes and Mineral Systems. [S. l.], Springer Netherlands, 2009, 1252 p.
15. Didenko A. I., Malyshev Yu. F., Saksin B. G. Glubinnoe stroenie i metallogeniya Vostochnoi Azii. [Deep structure and metallogeny of East Asia]. Vladivostok, Dal’nauka, 2010, 232 p. (In Russian).
16. Volkov A. V., Sidorov A. A., Starostin V. I. Metallogeniya vulkanogennykh poyasov i zon aktivizatsii. [Metallogeny of volcanogenic belts and zones of activation]. Moscow, MAKS-PRESS, 2014, 356 p. (In Russian).


Download »


© 2011-2020 Arctic: ecology and economy
DOI 10.25283/2223-4594