Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » No. 3(35) 2019 » The effect of water temperature anomalies at low latitudes of the ocean on Arctic climate variations and their predictability

THE EFFECT OF WATER TEMPERATURE ANOMALIES AT LOW LATITUDES OF THE OCEAN ON ARCTIC CLIMATE VARIATIONS AND THEIR PREDICTABILITY

JOURNAL: No. 3(35) 2019, p. 73-83

HEADING: Research activities in the Arctic

AUTHORS: Alekseev, G.V., Vyazilova, A.E., Glok, N.I., Ivanov, N.E., Kharlanenkova, N.E.

ORGANIZATIONS: State Research Center "Arctic and Antarctic Research Institute"

DOI: 10.25283/2223-4594-2019-3-73-83

UDC: 551.467

The article was received on: 16.04.2019

Keywords: climate, sea ice, arctic boost, transport from low latitudes, predictability

Bibliographic description: Alekseev, G.V., Vyazilova, A.E., Glok, N.I., Ivanov, N.E., Kharlanenkova, N.E. The effect of water temperature anomalies at low latitudes of the ocean on Arctic climate variations and their predictability. Arctic: ecology and economy, 2019, no. 3(35), pp. 73-83. DOI: 10.25283/2223-4594-2019-3-73-83. (In Russian).


Abstract:

Global warming in the Arctic is intensified by an increase in the transfer of heat and moisture in the atmosphere and the ocean from low latitudes, an increase in long-wave radiation to the surface due to an increase in water vapor in winter, increased melting and open water in summer. The influx of water vapor through 70° N significantly affects water vapor content and air temperature in the cold part of the year. Summer is dominated by the influx of water vapor from the Arctic. The inflow of warm and saline water from the North Atlantic to the Barents and Greenland Seas makes up the bulk of variability of ice cover in the Arctic Ocean from December to June. The average temperature of water and air in the Atlantic Arctic includes a low-frequency oscillation (LFO), consisting of a trend and periodic (with a period of about 70 years) fluctuations. LFO is a predictable component of air temperature variability, which is closely related to the characteristics of sea ice cover. A regression model based on this relationship can provide an effective prediction of the summer ice cover in the Arctic for a decade or more.


Finance info: Статья подготовлена по результатам работы по грантам РФФИ 18-05-00334 и 18-05-60107.

References:

1. IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014, 151 p.

2. Sandø A. B., Gao Y., Langehaug H. R. Poleward ocean heat transports, sea ice processes, and Arctic sea ice variability in NorESM1-M simulations. J. Geophys. Res. Oceans, 2014, vol. 119, no. 3, pp. 2095—2108.

3. Årthun M., Eldevik T. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J. Climate, 2016, vol. 29, no. 2, pp. 689—704.

4. Alekseev G. V., Kuzmina S. I., Glok N. I., Vyazilova A. E., Ivanov N. E., Smirnov A. V. Vliyanie Atlantiki na poteplenie i sokrashhenie morskogo ledyanogo pokrova v Arktike. [Influence of Atlantic on the warming and reduction of sea ice in the Arctic]. Led isneg, 2017, vol. 57, no. 3, pp. 381—390. (In Russian).

5. Alekseev G., Kuzmina S., Bobylev L., Urazgildeeva A., Gnatiuk N. Impact of atmospheric heat and moisture transport on the Arctic warming. Int. J. Climatol., 2019, pp. 1—11. Available at: https://doi.org/10.1002/joc.6040.

6. Marchuk G. I., Skiba Yu. N. Chislennyi raschet sopryazhennoi zadachi dlya modelei termicheskogo vzaimodeistviya atmosfery s okeanom i kontinentom. [Numerical calculation of the conjugate problem for a model of the thermal interaction of the atmosphere with the oceans and continents]. Izv. AN SSSR. FAO, 1976, vol. 12, no. 5, pp. 459—469. (In Russian).

7. Nikolaev Ju. V. Krupnomasshtabnoe vzaimodeistvie okeana i atmosfery i formirovanie anomalii pogody. [Large-scaleocean-atmosphere interaction and weather anomaly formation]. Leningrad, Gidrometeoizdat, 1981, 51 p. (In Russian).

8. Kushnir Y. Interdecadal Variations in North Atlantic Sea Surface Temperature and associated Atmospheric Conditions. J. Climate, 1994, vol. 7, pp. 141—157.

9. Robertson A. W., Mechoso C. R., Kim Y.-J. The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J. Climate, 2000, vol. 13, no. 1, pp. 122—138.

10. Sutton R. T., Hodson D. L. R. Influence of the ocean on North Atlantic climate variability 1871—1999. J. Climate, 2003, vol. 16, no. 20, pp. 3296—3313.

11. Wang C., Lee S. K., Enfield D. B. Climate response to anomalously large and small Atlantic warm pools during the summer. J. Climate, 2008, vol. 21, pp. 2437—2450.

12. Semenov V. A. Vliyanie okeanicheskogo pritoka v Barentsevo more na izmenchivost’ klimata v Arktike. [Influence of ocean flow to the Barents Sea on climate variability in the Arctic]. Dokl. RAN, 2008, vol. 418, no 1, pp. 106—109. (In Russian).

13. Hoerling M. P., Hurrell J. W., Xu T. Tropical origins for recent North Atlantic climate change. Science, 2001, vol. 292, pp. 90—92.

14. Palmer M. D., Haines K., Tett S. F. B., Ansell T. J. Isolating the signal of ocean global warming. Geophys. Res. Lett., 2007, vol. 34, no. L23610, pp. 1—6.

15. Huang J., McElroy M. B. Contributions of the Hadley and Ferrel circulations to the energetics of the atmosphere over the past 32 years. J. Climate, 2014, vol. 27, no. 7, pp. 2656—2666.

16. Lee S., Gong T., Johnson N., Feldstein S. B., Pollard D. On the possible link between tropical convection and the northern hemisphere arctic surface air temperature change between 1958 and 2001. J. Climate, 2011, vol. 24, pp. 4350—4367.

17. Garfinkel C. I., Waugh D. W., Polvani L. M. Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 2015, vol. 42, no. 24, pp. 10824—10831.

18. Barrett B. S., Henderson G. R., Werling J. S. The influence of the MJO on the intraseasonal variability of Northern Hemisphere spring snow depth. J. Climate, 2015, vol. 28, no. 18, pp. 7250—7262.

19. Goss M., Feldstein S. B., Lee S. Stationary wave interference and its relation to tropical convection and Arctic warming. J. Climate, 2016, vol. 29, no. 4, pp. 1369—1389.

20. Yoo C., Lee S., Feldstein S. B. Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmospheric Sciences, 2012, vol. 69, no. 8, pp. 2379—2393.

21. Yoo C., Feldstein S., Lee S. The impact of the Madden-Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979-2008 boreal winter. Geophys. Res. Lett., 2011, vol. 38, no. 24, pp. 1—6.

22. Yu B., Lin H. Tropical Atmospheric Forcing of the Wintertime North Atlantic Oscillation.  J. Climate, 2016, vol. 29, no. 5, pp. 1755—1772.

23. Vize V. Yu. Prichiny potepleniya Arktiki. [The reasons for Arctic warming-up]. Sovet. Arktika, 1937, vol. 1, pp. 1—7. (In Russian).

24. Zakharov V. F. Mirovoi okean i lednikovye epokhi pleistotsena. [World ocean and ice ages of the Pleistocene]. Leningrad, Gidrometeoizdat, 1978, 64 p. (In Russian).

25. Alekseev G. V., Glok N. I., Smirnov A. V., Vyazilova A. E. Vliyanie Severnoi Atlantiki na kolebaniya klimata v Barentsevom more i ikh predskazuemost’. [The Influence of the North Atlantic on Climate Variations in the Barents Sea and Their Predictability]. Meteorologiya i gidrologiya, 2016, vol. 8, pp. 38—56. (In Russian).

26. Zakharov V. F. Morskie l’dy v klimaticheskoi sisteme. [Sea ice in the climate system]. St. Petersburg, Gidrometeoizdat, 1996, 213 p. (In Russian).

27. Alekseev G. V., Kuzmina S. I., Urazgildeeva A. V., Bobilev L. P. Vliyanie atmosfernykh perenosov tepla i vlagi na usilenie potepleniya v Arktike v zimnii period. [The effect of atmospheric heat and moisture transfers on warming in the Arctic during the winter period]. Fundament. I prikladnaya klimatologiya, 2016, vol. 1, pp. 43—63. (In Russian).

28. Karsakov A. L. Okeanograficheskie issledovaniya na razreze “Kol’skii meridian” v Barentsevom more za period 1900—2008 gg. [Oceanographic Studies at the “Kola Meridian” Section in the Barents Sea for 1900—2008]. Murmansk, PINRO, 2009, 139 p. (In Russian).

29. Alekseev G. V., Kuzmina S. I., Glok N. I. Vliyanie anomalii temperatury okeana v nizkikh shirotakh na atmosferny i perenos tepla v Arktiku. [Influence of temperature anomalies of the ocean surface in low latitudes on the atmospheric heat transport to the Arctic]. Fundament. I prikladnaya klimatologiya, 2017, vol. 1, pp. 106—123. (In Russian).

30. KattsovV. M. et al.Arctic sea-ice change: a grand challenge of climate science. J. Glaciology, 2010, vol. 56, no. 200, pp. 1115—1121.

31. Pavlova T. V., Kattsov V. M. Ploshchad’ ledyanogo pokrova Mirovogo okeana v raschetakh s pomoshch’yu modelei CMIP5. [The area of the World Ocean ice cover in the calculations using the models CMIP5]. Tr. GGO, 2013, no. 568, pp. 7—25. (In Russian).

32. Msadek R., Vecchi G. A., Winton M., Gudgel R. G. Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 2014, vol. 41, no. 14, pp. 5208—5215.

33. Day J. J., Tietsche S., Hawkins E. Pan-Arctic and regional sea ice predictability: initialization month dependence. J. Climate, 2014, vol. 27, no. 12, pp. 4371—4390.

34. Sigmond M., Fyfe J. C., Flato G. M., Kharin V. V., Merryfield W. J. Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 2013, vol. 40, DOI:10.1002/grl.50129.

35. Kravtsov S. Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century. Geophys. Res. Lett., 2017, vol. 44, pp. 5749—5757.

36. Schlesinger M. E., Ramankutty N. An oscillation in the global climate system of period 65-70 years. Nature, 1994, vol. 367 (6465), pp. 723—726.

37. Trenberth K., Zhang R. & National Center for Atmospheric Research Staff (Eds). Last modified 10 Jan 2019. “The Climate Data Guide: Atlantic Multi-decadal Oscillation (AMO)”. Available at: https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo.

38. Panin G. N., Diansky N. A., Solomonova I. V. еt al.Otsenka klimaticheskikh izmenenii v Arktike v XXI stoletii na osnove kombinirovannogo prognosticheskogo stsenariya. [Assessment of climatic changes in the arctic in the 21st century based on the combined forecast]. Arktika: ekologiya i ekonomika, 2017, no.2 (26), pp. 35—52. DOI: 10.25283/2223-4594-2017-2-35-52. (In Russian).

39. Semenov V., Latif M., Dommenget D., Keenlyside N., Strehz A., Martin T., Park W. The Impact of North Atlantic–Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature. J. Climate, 2010, vol. 23, pp. 5668—5677.

40. Polyakov I., Johnson M. Arctic decadal and interdecadal variability. Geophys. Res. Lett.,2000, vol. 27(24), pp. 4097—4100.

41. Polyakov I. V., Alekseev G. V., Timokhov L. A., Bhatt U., Colony R. L., Simmons H. L., Walsh D., Walsh J. E., Zakharov V. F. Variability of the intermediate Atlantic Water of the Arctic Ocean over the last 100 years. J. Climate, 2004, vol. 17(23), pp. 4485—4497.

42. Zhang R. Mechanisms for low-frequency variability of summer Arctic sea ice extent. PNAS, 2015, vol 112, pp. 4570—4575.

43. Frolov I. E., Gudkovich Z. M., Karklin V. P., Kovalev E. G., Smolanitsky V. M. Otsenka vozmozhnykh izmenenii temperatury vozdukha i ploshchadi rasprostraneniya l’da v arkticheskikh moryakh v XXI veke. Nauchnye issledovaniya v Arktike. T. 2. Klimaticheskie izmeneniya ledyanogo pokrova morej Evrazijskogo shel’fa. [Assessment of possible changes in air temperature and ice area in the Arctic seas in the twenty-first century. Scientific Research in the Arctic. Vol. 2. Climatic changes in the ice cover of the seas of the Eurasian Shelf]. St. Petersburg, Nauka, 2007, pp. 111—116. (In Russian).


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594