Home Rubrics of the Journal Author Index Index ompany directory Article Index
The Arctic: ecology and economy
ISSN 2223-4594
Home Archive of journals Issue 4(32) 2018 The role of permafrost in the formation of the hydrological and morphological regime of river mouths in the Arctic Ocean watershed area


JOURNAL: 2018, 4(32), p. 70-85

RUBRIC: Research activities in the Arctic

AUTHORS: E.N. Dolgopolova

ORGANIZATIONS: Water Problems Institute of RAS

DOI: 10.25283/2223-4594-2018-4-70-85

UDC: 556.535.4

The article was received on: 24.07.2018

Keywords: river mouths, Arctic Ocean, hydrological regime, permafrost rocks, climate change

Bibliographic description: E.N. Dolgopolova The role of permafrost in the formation of the hydrological and morphological regime of river mouths in the Arctic Ocean watershed area. The Arctic: ecology and economy, 2018, no. 4(32), pp. 70-85. DOI:10.25283/2223-4594-2018-4-70-85. (In Russian).


The paper presents an analysis of hydrologic characteristics of 20 rivers flowing in permafrost zone. All river mouths under consideration are located in continuous permafrost. It is revealed that annual sediment discharge of the Mackenzie and Yukon rivers is several times greater than the ones of the rest of the permafrost zone rivers. The correlation coefficient between water flow and sediment of the rivers, excluding the Yukon and the Mackenzie, is approximately 0.8. The observed steady increase in the water flow in the in permafrost zone rivers in the last 50 years suggests a growth in the sediment flow in the river mouths of the area. To clarify the cause of the abnormally large sediment discharge of the Yukon and the Mackenzie, a brief review of climate change studies in the circumpolar region is provided. Changes in air temperature and soil are given. To assess the changes in the properties of frozen soils and the possible migration of the southern boundary of the permafrost to the north, data are given on the change in the depth of seasonal thawing of soil in the permafrost zone. The migration of the southern boundary of the permafrost soils distribution and its role in the formation of easily eroded soils on the catchment surface are discussed. A comparative analysis of the section lengths of rivers located in permafrost zones of various types is carried out to determine their impact on the sediment discharge in the Arctic river mouths.


1. Panin G. N., Dianskii N. A., Gusev A. V. et al. Otsenka klimaticheskikh izmenenii v Arktike v I stoletii na osnove kombinirovannogo prognostichekogo stsenariya. [Assessment of climatic changes in the Arctic in the 21st century based on the combined forecast]. Arktika: ekologiya i ekonomika, 2017, no. 2 (26), . 35—52. DOI: 10.25283/2223-4594-2017-2-35-52. (In Russian).

2. Morse P. D., Burn C. R., Kokelj S. V. Influence of snow on near-surface ground temperatures in upland and alluvial environments of the outer Mackenzie Delta, Northwest Territories. Canadian J. of Earth Sciences, 2012, vl. 49, no. 8, . 895—913. DOI: 10.1139/e2012-002.

3. Rennie C. D., Ahsan M. R., Laurent M. St. Sediment Transport in a Northern Regulated Semi-Alluvial River. Proc. 34th IAHR World Congress “Balance and Uncertainty”, Brisbane, Australia, 26.06—1.07, 2011, . 3737—3744.

4. Walvoord M. A., Kurylyk B. L. Hydrologic Impacts of Thawing Permafrost — A Review. Vadose Zone J., 2016, vl. 15, no. 6, 20 p. DOI: 10.2136/vzj2016.01.0010.

5. Dolgopolova E. N. Climate changes impact on river mouths in permafrost zone in Russia. Proceedings of 20th IAHR International Symposium on Ice, June 14—17, 2010. Lahti, Finland, vl. I. . 1—12.

6. Holmes R. M., Natali S., Goetz S. et al. Permafrost and Global Climate Change. Woods Hole Research Center. 2015, . 1—3.

7. Walker H. J. Arctic Deltas. J. of Coastal Research, 1998, vl. 3, no. 14, . 718—738.

8. Dolgopolova E. N. Vliyanie merzlykh gruntov na stok nanosov v ust’yakh rek v kriolitozone. [The influence of frozen soils on runoff sediment at the mouths of rivers in the permafrost]. Tr. XXVI Mezhdunar. konf. Evraz. nauch. ob-niya (ENO) “Aktual’nye voprosy razvitiya nauki v mire”, 2017, vl. 26, no. 4, . 185—189. (In Russian).

9. Dolgopolova E. N., Kotlyakov A. V. Mnogoletnemerzlye porody v ust’evykh oblastyakh arkticheskikh rek Rossii. [Permafrost in estuarine areas of the Arctic rivers of Russia]. Led i sneg, 2011, vol. 113, no. 1, . 81—92. (In Russian).

10. Hill P. R., Lewis C. P., Desmarais S. et al. The Mackenzie Delta: sedimentary processes and facies of a highlatitude, fi ne-grained delta. Sedimentology, 2001, vol. 48, . 1047—1078.

11. Dolgopolova E. N., Isupova M. V. Vliyanie mnogoletnemerzlykh gruntov na gidrologo-morfologicheskie protsessy v ust’yakh rek Lena i Makkenzi. [Impact of permafrost on the hydrology and morphological processes at the river mouths of Lena and Mackenzie]. Inzhener. ekologiya, 2014, no. 4 (118), . 10—26. (In Russian).

12. Beltaos S., Carter T., Prowse T. Morphology and genesis of deep scour holes in the Mackenzie Delta. Can. J. Civil Engineering, 2011, vl. 38, . 638—649. DOI: 10.1139/l11-034.

13. Thorsteinson L. K., Becker P. R., Hale D. A. The Yukon delta. A synthesis of information. NTOAA/National Ocean Service, Ocean Assessments Division, Alaska Offi ce. Anchorage, Alaska, 1989, 93 p.

14. Rood S. B., Kaluthota S., Philipsen L. J. et al. Increasing discharge from the Mackenzie River system to the Arctic Ocean. Hydrological Processes, 2017, vl. 31, . 150—160. Available at: https://doi.org/10.1002/hyp.10986.

15. Dolgopolova E. N. Gidrologicheskie protsessy v del’te, raspolozhennoi v zone mnogoletnemerzlykh porod. [Hydrological processes in delta located in permafrost]. Trudy V Vserossiiskoi konferentsii “Ledovye I termicheskie protsessy na vodnykh ob”ektakh Rossii”, Vladimir, 2016. Moscow, Izd-vo RGAU-MSKhA, . 270—277. (In Russian).

16. Brabets T. P., Wang B., Meade R. H. Environmental and Hydrologic Overview of the Yukon River Basin, Alaska and Canada. U.S. Geological Survey, 2000, Alaska, Denve, 106 p.

17. Korotaev V. N., Babich D. B. Spetsifi ka protsessov del’toobrazovaniya v kriolitozone. [Characteristic features of delta formation in cryosphere]. Tr. III Vseros. konf. “Ledovye i termicheskie protsessy na vodnykh ob”ektakh Rossii”. Onega, Izd-vo IVP RAN, 2011, . 384—389. (In Russian).

18. Opasnye ledovye yavleniya na rekakh i vodokhranilishchakh Rossii. [Dangerous ice phenomena at rivers and reservoirs of Russia]. onografi ya. Pod red. D. V. Kozlova. Moscow, Izd-vo RGAU—MSKhA, 2015, 348 . (In Russian).

19. Magritsky D., Mikhailov V., Korotaev V. et al. Changes in hydrological regime and morphology of river deltas in the Russian Arctic. Proceedings of HP1, IAHSIAPSO-IASPEL Assembly, 2013, Gothenburg, Sweden, IAHS Press, . 67—79.

20. Dolgopolova E. N. Regularities in the motion of water and sediments at the mouth of river of estuarinedeltaic type: case study of the Yenisei River. Water Resources. 2015, vl. 42, no. 2, . 198—207. DOI: 10.1134/S0097807815020050.

21. Reki i ozera mira. Entsiklopediya. [Rivers and Lakes of the World. Encyclopedia]. Moscow, Entsiklopediya, 2012, 928 . (In Russian).

22. Duboc Q., St-Onge G., Lajeunesse P. Sediment records of the infl uence of river damming on the dynamics of the Nelson and Churchill Rivers, western Hudson Bay, Canada, during the last centuries. The Holocene, 2017, vol. 27 (5), . 712—725. DOI: 10.1177/0959683616670465.

23. McCullough G. Sediments, CDOM and nutrient fl ow in the Nelson–Hayes Estuary. ArcticNet Report, Manitoba Hydro & the operating funds of the Centre for Earth Observation Science. 2006, 28 .

24. Guay C. K., Falkner K. K. A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas. Continental shelf research, 1998, vl. 18 (8), . 858—882. DOI: 10.1016/S0278-4343(98)00023-5.

25. Atlas: morfodinamika ust’evykh sistem krupnykh rek arkticheskogo poberezh’ya Rossii. [ATLAS: morphodynamics of mouth systems of large rivers at Arctic coast of Russia]. Geografi cheskii fakul’tet MGU im. M. V. Lomonosova, Institut okeanologii im. P. P. Shirshova RAN. Moscow, APR, 2017, 148 . (In Russian).

26. Hobel K. L. The Sagavanirktok River, North Slope Alaska: Characterization of an Arctic Stream. Report 86—267 United States Department of the Interior Geological Survey. California, 1986, . 1—28. DOI: 10.3133/ofr86267.

27. Arzhakova S. K. Zimnii stok rek kriolitozony Rossii. Monografi ya. [Winter runoff of the rivers of cryosphere in Russia. Monograph]. St. Petersburg, RGGMU, 2001, 209 . (In Russian).

28. Walker H. J., Hadden L. Placing Colville river delta research on the internet in a digital library format. Proceedings of Seventh International conference. Yellowknife, Canada, 1998, . 1103—1107.

29. Kravtsova V. I., Mit’kinykh N. S. Ust’ya rek Rossii. Atlas kosmicheskikh snimkov. [River mouths of Russia. Atlas of space pictures]. Edited by V. N. Mikhaylov. oscow, Nauch. mir, 2013, 124 . (In Russian).

30. Milliman J. D., Syvitski J. P. M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. J. of Geology, 1992, vl. 100, no. 5, . 525—544. Available at: https://doi.org/10.1086/629606.

31. Field guide to rivers of North America. Edited by A. C. Benke, C. E. Cushing. Elsevier Academic Press, 2010, 459 p.

32. Scott K. M. Eff ects of Permafrost on Stream Channel Behavior in Arctic Alaska. Geological Survey professional paper 1068. Washington, United States Government Printing Offi ce, 1978, 19 .

33. Holmes R. R. Jr. Measurement of Bedload Transport in Sand-Bed Rivers: A Look at Two Indirect Sampling Methods. U.S. Geological Survey Scientifi c Investigations Report 2010-5091. Rolla, Missouri, 2010, . 236—252.

34. Shiklomanov N. I., Streletskiy D. A., Little J. D.,Nelson F. E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophysical Research Letters, 2013, 40 (24), . 6356—6361. DOI: 10.1002/2013GL058295.

35. Belolipetskii V. M., Genova S. N. Vychislitel’nyi algoritm dlya opredeleniya dinamiki vzveshennykh i donnykh nanosov v rechnom rusle. [Algorithm for calculation of suspended and bed load sediment in a river bed]. Vychisl. tekhnologii, 2004, vl. 9, no. 2, . 9—25. (In Russian).

36. Pavlov A. V., Malkova G. V. Melkomasshtabnoe kartografirovanie trendov sovremennykh izmenenii temperatury gruntov na Severe Rossii. [Small-scale mapping of trends of the contemporary ground temperature changes in the Russian North]. Kriosfera Zemli, 2009, vl. 13, no. 4, . 32—39. (In Russian).

37. Alekseev G. V., Radionov V. F., Aleksandrov V. I. et al. Klimaticheskie izmeneniya v Arktike i severnoi polyarnoi oblasti. [Climate change in the Arctic and the Northern Polar region]. Problemy Arktiki i Antarktiki, 2010, vl. 84, no.1, . 67—80. (In Russian).

38. Metody otsenki posledstvii izmeneniya klimata dlya fizicheskikh i biologicheskikh sistem. [Methods of estimation of climate changes impact on physical and biological systems]. Edited by S. M. Semenov. Moscow, Rosgidromet, 2012, 508 . (In Russian).

39. Payne C., Panda S., Prakash A. Remote Sensing of River Erosion on the Colville River, North Slope Alaska. Remote Sensing, 2018, 10, 397, . 1—20. Available at: https://doi.org/10.3390/rs10030397.

40. Smith S. L., Burgess M. M. Mapping the response of permafrost in Canada to climate warming. Geological Survey of Canada, 1999, . 163—171.

41. Smith S. Trends in permafrost conditions and ecology in northern Canada. Canadian Biodiversity: Ecosystem Status and Trends. Technical Thematic Report no. 9. Ottawa, Canadian Councils of Resource Ministers, 2011, 27 p.

42. Coleman K. A. et al. Tracking the impacts of recent warming and thaw of permafrost peatlands on aquatic ecosystems: a multi-proxy approach using remote sensing and lake sediments. Boreal Environmental Research, 2015, vl. 20, . 363—377.

43. Déry S. J., Stadnyk T. A., MacDonald M. K., Gauli-SharmaB. Recent trends and variability in river discharge across northern Canada. Hydrology and Earth System Science, 2016, vl. 20, . 4801—4818. DOI: 10.5194/hess-20-4801-2016.

44. Shiklomanov I. A., Georgievskii V. Yu., Shiklomanov A. I.t l. Novye dannye o stoke krupneishikh rek, vpadayushchikh v Severnyi Ledovityi ocean. [New data on the river flow of the large rivers flowing into Arctic Ocean]. Polyarnaya kriosfera vody i sushi. Moscow; St. Petersburg, Paulsen Ed., 2011, . 265—278. (In Russian).

45. Dobrovol’skii S. G. Global’naya gidrologiya. Protsessy I prognozy. [Global hydrology. Processes and forecasts]. Moscow, GEOS, 2017, 526 . (In Russian).

46. Dolgopolova E. Sediment fl ow at the river mouths of the permafrost zone. Proceedings of 10th International SedNet Conference “Sediments on the move”, 14—17.06, 2017. Genoa, Italy.

47. Dobrovol’skii S. G. Global’nye izmeneniya rechnogo stoka. [Global changes of river flow]. Moscow, GEOS, 2011, 660 . (In Russian).

48. Hansen J., Sato M., Ruedy R. et al. Global temperature 2017. Print 18.01.2018, . 1—5.

49. Otsenochnyi otchet “Osnovnye prirodnye i sotsial’noekonomicheskie posledstviya izmeneniya klimata v raionakh rasprostraneniya mnogoletnemerzlykh porod: prognoz na osnove sinteza nablyudenii i modelirovaniya”. “Grinpis”. [Report of Greenpeace of Russia “Main nature and socio-economic effects of climate change in permafrost zone: forecast on the basis of synthesis observations and modeling results”]. Moscow, OMNNO, 2010, 43 . Available at: http://www.greenpeace.org/russia/Global/russia/report/2009/11/4121202.pdf. (In Russian).

50. Pavlov A. V. Monitoring kriolitozony. [Permafrost monitoring]. Novosibirsk, Akad. izd-vo “Geo”, 2008, 229 . (In Russian).

51. Burn C. R., Kokelj S. V. The environmental and permafrost of the Mackenzie delta area. Permafrost and periglacial processes, 2009, vol. 20, pp. 83—105. DOI: 10.1002/ppp.655.

52. Wendler G., Gordon T., Stuefer M. On the Precipitation and Precipitation Change in Alaska. Atmosphere, 2017, vl. 253, no. 8, . 1—10. Available at: https://doi.org/10.3390/atmos8120253.

53. Alaska’s Thawing Permafrost. USGS–NASA. Available t: http://landsat.gsfc.nasa.gov.

54. Wilson N. J., Walter M. T., Waterhouse J. Indigenous knowledge of hydrologic change in the Yukon River basin: a case study of Ruby, Alaska. ARCTIC, 2015, vl. 68, no. 1, . 93—106. DOI: 10.14430/arctic4459.

Download »

© 2011-2019 The Arctic: ecology and economy
DOI 10.25283/2223-4594