Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Home » Archive of journals » No. 2(34) 2019 » Identification of frontal zones position on the surface of the Barents Sea according to in situ and remote sensing data


JOURNAL: No. 2(34) 2019, p. 48-63

HEADING: Research activities in the Arctic

AUTHORS: Moiseev, D.D., Zaporozhtsev, I.F., Maximovskaya, T.M., Dukhno, G.N.

ORGANIZATIONS: Murmansk Arctic State University, Murmansk Marine Biological Institute of Kola Scientific Center of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2019-2-48-63

UDC: 551.465

The article was received on: 10.12.2018

Keywords: Barents sea, Polar Frontal Zone, contact and satellite data

Bibliographic description: Moiseev, D.D., Zaporozhtsev, I.F., Maximovskaya, T.M., Dukhno, G.N. Identification of frontal zones position on the surface of the Barents Sea according to in situ and remote sensing data. Arctic: ecology and economy, 2019, no. 2(34), pp. 48-63. DOI: 10.25283/2223-4594-2019-2-48-63. (In Russian).


In the paper analysis of position and characteristics of frontal zones in the Barents Sea from 2008 to 2018 is presented according to sea surface temperature and salinity data obtained as a result of satellite (temperature only) and in situ (along standard oceanographic sections no. 3, 6, 19) measurement. We perform numerical experiments to evaluate the informativeness of the results of using two front identification methods. The first one builds the fields of the modules of the horizontal gradients of the sea surface temperature, the second one generates contours (fronts). The latter is based on digital image processing method to identify boundaries with contextual median filtering and Sobel differentiation performing. While the first method requires human expert to analyse constructing maps of the distribution of horizontal gradient module to obtain fronts, another tends to retrieve fronts automatically. In the area of the Medvezhinsky Rise, the results of the methods are well concerted for the period under consideration. Taking into account the spatial resolution and significant temporal averaging of satellite data, the boundary method turned out to be less informative in comparison with another one. When processing data on the distribution of sea surface temperature as close as possible to measurement dates, a period of time can be corrected for the position of hydrological stations when working in the Polar Frontal Zone area. The best result in revealing the current position of the frontal zone can be achieved with simultaneous use of contact and satellite sensing data and both front identification methods.

Finance info: Работа выполнена в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2014—2020 годы», проекта «Разработка методов экосистемного мониторинга заливов и шельфа Баренцева моря и высокоширотной Арк­тики, сценарного моделирования аварийных ситуаций при транспортировке нефтепродуктов и радиоактивных отходов и экспериментальных технологий их защиты от загрязнения в условиях морского перигляциала» (уникальный идентификатор проекта RFMEFI61616X0073, соглашение № 14.616.21.0073).


1. Ozhigin V. K., Ivshin V. A., Trofimov A. G., Karsakov A. L., Antsiferov M. Yu. Vody Barentseva morya: struktura, tsirkulyatsiya, izmenchivost’. [The Barents sea waters: structure, circulation, variability]. PINRO. Murmansk, 2016, 260 p. (In Russian).
2. Kattsov V. M., Porfir’ev B. N. Klimaticheskie izmeneniya v Arktike: posledstviya dlya okruzhayushchei sredy i ekonomiki. [Climate changes in Arctic. Environment and economy effects]. Arktika: ekologiya i ekonomika, 2012, no. 2 (6), pp. 66—79. (In Russian).
3. Matishov G. G., Volkov V. A., Denisov V. V. O strukture tsirkulyatsii teplykh atlanticheskikh vod v severnoi chasti Barentseva moray. [On the structure of the circulation of warm Atlantic waters in the northern part of the Barents Sea]. Dokl. RAN, 1998, vol. 362, no. 4, pp. 553—556. (In Russian).
4. Matishov G. G., Dzhenyuk S. L., Moiseev D. V., Zhichkin A. P. Klimaticheskie izmeneniya morskikh ekosistem evropeiskoi Arktiki. [Climate changes in the marine ecosystems of the European Arctic]. Problemy Arktiki i Antarktiki, 2010, no. 3 (86), pp. 7—21. (In Russian).
5. Ozhigin V. K. O frontal’nykh zonakh Barentseva moray. [On frontal zones of the Barents sea]. Voprosy promyslovoi okeanologii Severnogo basseina. Sbornik nauchnykh trudov. Murmansk, PINRO, 1989, pp. 104—117. (In Russian).
6. Rodionov V. B., Kostyanoi A. G. Okeanicheskie fronty morei Severo-Evropeiskogo basseina. [Ocean fronts in Nothern European seas]. Moscow, GEOS, 1998, 293 s. (In Russian).
7. Fedorov K. N. Fizicheskaya priroda i struktura okeanicheskikh frontov. [Physical nature and structure of ocean fronts]. Leningrad, Gidrometeoizdat, 1983, 296 p. (In Russian).
8. Matishov G. G., Matishov D. G., Moiseev D. V. Inflow of Ftlantic-origin waters to the Barents Sea along glacial troughs. Oceanologia, 2009, vol. 51, no. 3, pp. 321—340. DOI: 10.5697/oc.51-3.321.
9. Matishov G. G., Moiseev D. V., Lyubina O. M., Zhichkin A. P., Dzhenyuk A. L., Karamushko O. V., Frolova E. V. Climate and cyclic hydrobiological changes of the Barents Sea from the twentieth to twenty-first centuries. Polar Biology, 2012, vol. 35, pp. 1—18. DOI: 10.1007/s00300-012-1237-9.
10. Belkin I. M., Cornillon P. C., Sherman K. Fronts in Large Marine Ecosystems // Progress in Oceanography, 2009, vol. 81, no. 1—4, pp. 223—236. DOI: 10.1016/j.pocean.2009.04.015.
11. Belkin I. M., O’Reilly J. E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. of marine systems, 2009, vol. 78, no. 3, pp. 319—326. DOI: 10.1016/j.jmarsys.2008.11.018.
12. Cayula J.-F., Cornillon P. Edge detection algorithm for SST images. J. of Atmospheric and Oceanic Technology, 1992, no. 9 (1), pp. 67—80.
DOI: 10.1175/1520-0426(1992)0092.0.CO;2.
13. Karimova S. Hydrological fronts seen in visible and infrared MODIS imagery of the Black Sea. Intern. J. of Remote Sensing, 2014, vol. 35, no. 16, pp. 6113—6134. DOI: 10.1080/01431161.2014.943327.
14. Kirches G., Paperin M., Klein H., Brockmann C., Stelzer K. GRADHIST — A method for detection and analysis of oceanic fronts from remote sensing data. Remote Sensing of Environment, 2016, vol. 181, pp. 264—280. DOI: 10.1016/j.rse.2016.04.009.
15. Mugo R. M., Saitoh S. I., Takahashi F., Nihira A. Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: A proof of concept. Deep-Sea Research Part II, 2014, vol. 107, pp. 29—39. DOI: 10.1016/j.dsr2.2013.11.005.
16. Oerder V., Bento J. P., Morales C. E., Hormazabal S., Pizarro O. Coastal Upwelling Front Detection off Central Chile (36.5-37°S) and Spatio-Temporal Variability of Frontal Characteristics. Remote sensing, 2018, vol. 10, no. 5, pp. 440—464. DOI: 10.3390/rs10050690.
17. Ping B., Su F., Du Y. Bohai front detection based on multi-scale Sobel algorithm. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC. Quebec City, 2014, pp. 4423—4426. DOI: 10.1109/IGARSS.2014.6947472.
18. Ping B., Su F., Meng Y., Du Y., Fang S. Application of a sea surface temperature front composite algorithm in the Bohai, Yellow, and East China Seas. Chinese J. of Oceanology and Limnology, 2016, vol. 34, no. 3, pp. 597—607. DOI: 10.1007/s00343-015-4356-7.
19. Roa-Pascuali L., Demarcq H., Nieblas A.-E. Detection of mesoscale thermal fronts from 4 km data using smoothing techniques: Gradient-based fronts classification and basin scale application. Remote Sensing Of Environment, 2015, vol. 164, pp. 225—237. DOI: 10.1016/j.rse.2015.03.030.
20. Sagarminaga Y., Arrizabalaga H. Relationship of Northeast Atlantic albacore juveniles with surface thermal and chlorophyll-a fronts. Deep-Sea Research Part II, 2014. vol. 107, pp. 54—63. DOI: 10.1016/j.dsr2.2013.11.006.
21. Stendardo I., Rhein M., Hollmann R. A high resolution salinity time series 1993—2012 in the North Atlantic from Argo and Altimeter data. J. of Geophysical Research: Oceans, 2016, vol. 121, no. 4, pp. 2523—2551. DOI: 10.1002/2015JC011439.
22. Blackledge J. M. Digital image processing. Chichester, Horwood Publ., 2005, 824 p.
23. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, no. 8 (6), pp. 679—698. DOI: 10.1109/TPAMI.1986.4767851.
24. Zaporozhtsev I. F., Moiseev D. V. Verifikatsiya re­gio­nal’noi konfiguratsii global’noi gidrodinamicheskoi modeli dlya Azovskogo morya po dannym in situ. [Verification of global hydrodynamic model regional configuration for the Sea of Azov with in situ data]. Nauka Yuga Rossii, 2018, no. 1 (14), pp. 59—70. DOI: 10.23885/2500-0640-2018-14-1-59-70. (In Russian).
25. Zaporozhtsev I. F., Moiseev D. V. Otsenka vremennoi izmenchivosti zatoka atlanticheskikh vod v Barentsevo more po termokhalinnym dannym razreza “Kol’skii meridian”: s 1970 g. do nashikh dnei. Protsessy v geosredakh, 2018, no. 3 (17), pp. 223—224. (In Russian).
26. Kostyanoi A. G. Sputnikovyi monitoring klimaticheskikh parametrov okeana. Ch. 2. [Satellite monitoring of the ocean climate parameters. Part 1]. Fundament. i priklad. klimatologiya, 2017, vol. 3, pp. 57—64. DOI: 10.21513/2410-8758-2017-3-57-64.

Download »

© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594