Home Rubrics of the Journal Author Index Index ompany directory Article Index
 
The Arctic: ecology and economy
ISSN 2223-4594
RuEn
Advanced
Search
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home Archive of journals Issue 2(34) 2019 Earth degassing in the Artic: remote and field studies of the thermokarst lakes gas eruption

EARTH DEGASSING IN THE ARTIC: REMOTE AND FIELD STUDIES OF THE THERMOKARST LAKES GAS ERUPTION

JOURNAL: 2019, 2(34), p. 31-47

RUBRIC: Research activities in the Arctic

AUTHORS: Bogoyavlensky V.I., Bogoyavlensky I.V., Sizov O.S., Nikonov R.A., Kargina T.N.

ORGANIZATIONS: Oil and Gas Research Institute of RAS, Gubkin Russian State University of Oil and Gas (National Research University), Russian Space Systems

DOI: 10.25283/2223-4594-2019-2-31-47

UDC: 502:631.4(98)

The article was received on: 04.04.2019

Keywords: pingo (blow-up), gas explosion, funnels, ignition, volcano, gas blowout (emission), degassing,, remote sensing of the Earth, satellite images, crater, monitoring, Yamal peninsula, remote sensing of the Earth, thermokarst lakes, gas blowout, cryovolcano

Bibliographic description: Bogoyavlensky V.I., Bogoyavlensky I.V., Sizov O.S., Nikonov R.A., Kargina T.N. Earth degassing in the Artic: remote and field studies of the thermokarst lakes gas eruption. The Arctic: ecology and economy, 2019, no. 2(34), pp. 31-47. DOI:10.25283/2223-4594-2019-2-31-47. (In Russian).


ANNOTATION:

It is proved for the first time that a high power of gas blowout from the bottom of Arctic thermokarst lakes is capable of breaking one-and-a-half-meter-thick ice, forming large ice destruction zones of tens of meters in diameter (in fact up to 15-45 m) and scattering large blocks of ice for distances over 50 m from the epicenter of the explosion. Clearly visible repeated onshore and underwater (from bottoms of lakes and the Myudriyakha River) eruptions (blowout) of gas of cryovolcanic type are detected in the permafrost zone (cryosphere) of the Yamal Peninsula. The connection between the location of lakes with powerful degassing and regional tectonic structures and deep faults is shown. Recommendations are made to improve the safety of human life in the Arctic, especially when developing oil and gas resources. The necessity of expanding research using a complex of geophysical methods is substantiated.


Reference:

1. Bogoyavlensky V. I., Urupov A. K., Budagova T. A., Dobrynin S. V. Anizotropnye svoystva osadochnogo chekhla kontinental’nogo shel’fa. [Anisotropic features of continental shelf sedimental cover]. Gaz. prom-st’, 1997, no. 7, pp. 16—18 (In Russian).

2. Bogoyavlensky V. I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala i Taimyra. [The threat of catastrophic gas blowouts form the Arctic permafrost]. Burenie i neft’, 2014, no. 9, pp. 13—18. (In Russian).

3. Bogoyavlensky V. I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala i Taimyra. Ch. 2. [The threat of catastrophic gas blowouts form the Arctic permafrost. Pt. 2]. Burenie i neft’, 2014, no. 10, pp. 4—8. (In Russian).

4. Bogoyavlensky V. I. Arktika i Mirovoi okean: sovremennoe sostoyanie, perspektivy i problemy osvoeniya resursov uglevodorodov. Monografiya. [Arctic and the World Ocean: current state, perspectives and challenges of hydrocarbon production. Monograph]. Tr. Vol’nogo ekon. o-va Rossii, 2014, vol. 182, no. 3, pp. 12—175. (In Russian).

5. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Distantsionnoe vyyavlenie uchastkov poverkhnostnykh gazoproyavlenii i gazovykh vybrosov v Arktike: poluostrov Yamal. [Remote detection of near surface gas shows and blowouts in the Arctic: Yamal peninsula]. Arktika: ekologiya i ekonomika, 2016, no. 3 (23), pp. 4—13. (In Russian).

6. Bogoyavlensky V. I. Prirodnye i tekhnogennye ugrozy pri osvoenii mestorozhdenii nefti i gaza v Arktike. [Natural and man-made threats during the development of oil and gas fields in the Arctic]. Sb. dokl. konferentsii “Dostizheniya nauki kak osnova nauchno-tekhnicheskogo progressa v ustoichivom perspektivnom razvitii gazovoi otrasli”. Noosfera, 2016, no. 1, pp. 48—67. (In Russian).

7. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Rezul’taty aerokosmicheskikh i ekspeditsionnykh issledovanii krupnykh vybrosov gaza na Yamale v raione Bovanenkovskogo mestorozhdeniya. [Results of aerial, space and field investigations of large gas blowouts near Bovanenkovo field on Yamal peninsula]. Arktika: ekologiya i ekonomika, 2017, no. 3 (27), pp. 4—17. DOI: 10.25283/2223-4594-2017-3-4-17. (In Russian).

8. Bogoyavlensky V. I., Boichuk V. M., Perekalin S. O., Bogoyavlensky V. I., Kargina T. N. Katastrofa Kumzhi. [Disaster Kumzhi]. Burenie i neft’, 2017, no. 1, pp. 18—24. (In Russian).

9. Bogoyavlensky V. I. Gazogidrodinamika v kraterakh vybrosa gaza v Arktike. [Gas-hydrodynamics in the Arctic craters of gas blowout]. Arktika: ekologiya i ekonomika, 2018, no. 1 (29), pp. 48—55. DOI: 10.25283/2223-4594-2018-1-48-55. (In Russian).

10. Bogoyavlensky V. I., Bogoyavlensky I. V. Prirodnye i tekhnogennye ugrozy pri poiske, razvedke i razrabotke mestorozhdenii uglevodorodov v Arktike. [Natural and technogenic threats in prospecting, exploration and development of hydrocarbon fields in the Arctic]. Miner. resursy Rossii. Ekonomika i upravlenie, 2018, no. 2, pp. 60—70. (In Russian).

11. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Tekhnologii distantsionnogo vyyavleniya i monitoringa degazatsii Zemli v Arktike: poluostrov Yamal, ozero Neyto. [Technologies for Remote Detection and Monitoring of the Earth Degassing in the Arctic: Yamal Peninsula, Neito Lake]. Arktika: ekologiya i ekonomika, 2018, no. 2 (30), pp. 83—93. DOI: 10.25283/2223-4594-2018-2-83-93. (In Russian).

12. Bogoyavlensky V. I., Sizov O. S., Mazharov A. V., Bogoyavlensky I. V., Nikonov R. A., Kishankov A. V., Kargina T. N. Degazatsiya Zemli v Arktike: distantsionnye i ekspeditsionnye issledovaniya katastroficheskogo Seyakhinskogo vybrosa gaza na poluostrove Yamal. [Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula]. Arctic: Ecology and Economy, 2019, no. 1 (33), pp. 88—105. DOI: 10.25283/2223-4594-2019-1-88-105. (In Russian).

13. Bondur V. G., Kuznetsova T. V. Vyyavlenie gazovykh sipov v akvatoriyakh arkticheskikh morey s ispol’zovaniem dannykh distantsionnogo zondirovaniya. [Detection of gas seeps in the Arctic offshore areas, using remote sensing data]. Issledovanie Zemli iz kosmosa, 2015, no. 4, pp. 30—43. DOI: 10.7868/S020596141504003X. (In Russian).

14. Kachurin S. P. Termokarst na territorii SSSR. [Thermokarst on the territory of USSR]. Moscow, AN SSSR, 1961, 263 p. (In Russian).

15. Kruglikov N. M., Kuzin I. L. Vykhody glubinnogo gaza na Urengoyskom mestorozhdenii. [Gas emissions on the Urengoy field]. Tr. ZapSibNIGNI, 1973, vol. 37, pp. 96—106. (In Russian).

16. Kuzin I. L. O prirode anomal’nykh ozer — pokazateley uglevodorodov v glubokikh gorizontakh osadochnogo chekhla. [About the nature of blue lakes — the indicators of hydrocarbon accumulations in deep horizons of sedimental cover]. Problemy otsenki novykh zon neftegazonakopleniya v osnovnykh produktivnykh tolshchakh Zapadnoy Sibiri. St. Petersburg, VNIGRI, 1992, pp. 129—137. (In Russian).

17. Kuzin I. L. O prioritete v izuchenii poverkhnostnykh gazoproyavleniy d Zapadnoy Sibiri. [About the priority of surface gas shows investigayion in West Siberia]. Geologiya nefti I gaza, 1990, no. 9, pp. 142—144 (In Russian).

18. Leibman M. O., Dvornikov Yu. A., Khomutov A. V. et al. Vodno-khimicheskie osobennosti vody ozer i voronok gazovogo vybrosa, vlozhennykh v morskie otlozheniya severa Zapadnoi Sibiri. [Water-chemical features of the water of lakes and funnels of the gas emission, invested in marine deposits of the north of Western Siberia]. Geologiya morei i okeanov: Materialy XXII Mezhdunarodnoi nauchnoi konferentsii (Shkoly) po morskoi geologii. Vol. 4. Moscow, IO RAN, 2017, pp. 117—121. (In Russian).

19. Mel’nikov V. P., Spesivtsev V. I., Kulikov V. N. O struynoy degazatsii uglevodorodov kak istochnike novoobrazovaniy l’da na shel’fe Pechorskogo morya. [On jet degassing of hydrocarbons as a source of ice formation on the shelf of the Pechora Sea]. Itogi fundamental’nykh issledovaniy kriosfery Zemli v Arktike i Subarktike: Materialy mezhdunarodnoy konferentsii. Novosibirsk, Nauka, 1997, . 259—269. (In Russian).

20. Nikonov A. A. Krymskiye zemletryasyeniya 1927 goda: neizvestnyye yavleniya na more. [The Crimean earthquakes of 1927: unknown phenomena in the sea]. Priroda, 2002, no. 9, pp. 13—20. (In Russian).

21. Obzhirov A. I. Gazogidraty I potoki metana v Okh­otskom more. [Gas hydrates and methane flows in the Sea of Okhotsk]. Mor. inform.-upravlayushchiye sistemy, 2013, no. 1 (2), pp. 56—65. (In Russian).

22. Sannikov G. S. Kartometricheskiye issledovaniya termokarstovykh ozyor na territorii Bovanenkovskogo mestorozhdeniya. Poluostrov Yamal. [Cartometric investigations of thermokarst lakes on the territory of Bovanenkono field. Yamal Peninsula]. Kriosfera Zemli, 2012, vol. XIV, no. 2, pp. 30—37. (In Russian).

23. Sergiyenko V. I., Lobkovskiy L. I, Semiletov I. P. et. al. Degradatsiya podvodnoy merzloty I razrusheniye gidratov shelfa morey Vostochnoy Arktiki kak vozmozhnaya prichina “metanovoy katastrofi”: nekotoriye rezultati kompleksnikh issledovaniy 2011 goda. [Underwater permafrost degradation and gas hydrates destruction of East Arctic seas shelf as one of the reasons of “metane catastrophe”: some results of 2011 year complex studies]. Dokl. Akad. nauk. 2012, vol. 446, no. 3, pp. 330—335. (In Russian).

24. Sizov O. S. Distantsionnyi analiz posledstvii poverkhnostnykh gazoproyavlenii na severe Zapadnoi Sibiri. [Remote analysis of consequences of surface gas occurrence in the north of Western Siberia]. Geomatika, 2015, no. 1, pp. 53—68. (In Russian).

25. Shakhova N. E., Sergiyenko V. I., Semiletov I. P. Vklad Vostochno-Sibirskogo shelfa v sovremennyy tsykl metana. [Contribution of East Siberian shelf to the contemporary methane cycle]. Vestn. RAN, 2009, vol. 79, pp. 507—518. (In Russian)

26. Yakushev V. S. Prirodnyi gaz i gazovye gidraty v kriolitozone. [Natural gas and gas hydrates in cryolithic zone]. Moscow, VNIIGAZ, 2009, 192 p. (In Russian).

27. Andreassen K., Nilssen E. G., Degaard C. M. Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data. Geo-Marine Letters. 2007, vol. 27, no. 2, . 155—171. DOI: 10.1007/s00367-007-0071-5.

28. Anthony K. M. W., Anthony P., Grosse G., Chanton J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience, 2012, vol. 5, . 419—426. DOI: 10.1038/ngeo1480.

29. Bogoyavlensky V., Kishankov A., Yanchevskaya A., Bogoyavlensky I. Forecast of Gas Hydrates Distribution Zones in the Arctic Ocean and Adjacent Offshore Are­as. Geosciences, 2018, 8, 453, 17 p. DOI: 10.3390/geosciences8120453.

30. Bondur V. G., Kuznetsova T. V. Detecting Gas Seeps in Arctic Sea Water Areas Using Remote Sensing Data. Izvestiya. Atmospheric and Oceanic Physics, 2015, vol. 51, no. 9, . 1060—1072. DOI: 10.1134/S0001433815090066.

31. Brandt R. E., Surface S. G. Albedo of the Antarctic Sea Ice Zone. J. of Climate, 2005, vol. 18, pp. 3606—3622.

32. Gismeteo. Available at: https://www.gismeteo.ru/diary/236826/2019/3/.

33. Judd A., Hovland M. Seabed Fluid Flow. The Impact on Geology, Biology, and the Marine Environment. Cambridge, 2007, 475 .

34. Lindgren P. R., Grosse G., Walter Anthony K. M., Meyer F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high resolution optical aerial imagery. Biogeosciences. 2016, no. 13 (1), . 27—44. DOI: 10.5194/bg-13-27-2016.

35. Maier L. Killing the King Christian D-18 well, Arctic Isands. Petroleum History Society Archives, June 2014, V.XXV, no. 4. . 5—10.

36. Martinez-Cruz K., Sepulveda-Jauregui A., Walter Anthony K., Thalasso F. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in laskan lakes. Biogeosciences. 2015, 12 (15), . 4595—4606. DOI: 10.5194/bg-12-4595-2015.

37. Paltan H., Dash J., Edwards M. A refined mapping of Arctic lakes using Landsat imagery. Int. J. Remote Sens, 2015, 36, . 5970—5982. DOI: 10.108 0/01431161.2015.1110263.

38. Paull C. K., Dallimore S. R., Caress D. W. et al. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. Geochemistry, Geophysics, Geosystems, 2015, 16, p. 3160—3181. DOI: 10.1002/2015GC005928.

39. Sauter E. S., Muyakshin S. I., Charlou J. et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth and Planetary Science Letters, 2006, 243 (3-4), p. 354—365.

40. Shokr M., Sinha N. Sea Ice. Physics and Remote Sensing. [S. l.], Viley, 2015, 607 p.

41. Snow albedo. Last Updated on Wed, 03 Apr 2019. Available at: https://www.climate-policy-watcher.org/energy-balance/snow-albedo.html.

42. Walter Anthony K. M., Vas D. A., Brosius L. et al. Estimating methane emissions from northern lakes using ice bubble surveys. Limnology and Oceanography: Methods, 2010, vol. 8, . 592—609. DOI: 10.4319/lom.2010.8.0592.


Download »


© 2011-2019 The Arctic: ecology and economy
DOI 10.25283/2223-4594