Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 13, No. 3, 2023 » New data on intensive Earth degassing in the Arctic in the north of Western Siberia: thermokarst lakes with gas blowout craters and mud volcanoes

NEW DATA ON INTENSIVE EARTH DEGASSING IN THE ARCTIC IN THE NORTH OF WESTERN SIBERIA: THERMOKARST LAKES WITH GAS BLOWOUT CRATERS AND MUD VOLCANOES

JOURNAL: Volume 13, No. 3, 2023, p. 353-368

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Nikonov, R.A., Bogoyavlensky, I.V.

ORGANIZATIONS: Oil and Gas Research Institute of RAS

DOI: 10.25283/2223-4594-2023-3-353-368

UDC: 551.311.8, 504.4, 553.981

The article was received on: 25.05.2023

Keywords: gas hydrates, remote sensing of the Earth, Yamal peninsula, thermokarst lakes, mud volcano, Western Siberia, Earth degassing, taliks, gas blowouts and explosions

Bibliographic description: Bogoyavlensky, V.I., Nikonov, R.A., Bogoyavlensky, I.V. New data on intensive Earth degassing in the Arctic in the north of Western Siberia: thermokarst lakes with gas blowout craters and mud volcanoes. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2023, vol. 13, no. 3, pp. 353-368. DOI: 10.25283/2223-4594-2023-3-353-368. (In Russian).


Abstract:

In the last decade, in the north of Western Siberia, the authors carried out a large amount of comprehensive research, which made it possible to obtain fundamentally new information about the gas-dynamic mechanisms of dangerous processes in the Arctic permafrost. According to remote sensing data, at the bottom of thermokarst lakes, rivers and coastal zones of the Kara Sea, more than 4.5 thousand zones of powerful gas blowouts with the formation of craters (pockmark) were found. There are reasons to believe that powerful gas emissions mainly come from shallow deposits with ultrahigh (superlithostatic) pressures. For the first time, large mud volcanic uplifts with pronounced craters have been found at the bottom of the Arctic thermokarst lakes. Based on the monitoring of the ice situation and the water environment on the basis of retrospective satellite images on lakes Otkrytie, Labvarto and Yambuto, the presence of periodic emissions of formation fluids, including gas, is shown. Based on the combination of a number of features, the discovered objects can be classified as active mud volcanoes with a high level of probability. The results of the studies allow us to state that mud volcanism is widespread in the Circum-Arctic megaregion.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic “Improving the efficiency and environmental safety of the oil and gas resources development in the Arctic and Subarctic zones of the Earth in a changing climate” (No. 122022800264-9)

References:

1. Etiope G. Natural Gas Seepage. The Earth’s Hydrocarbon Degassing. [S. l.], Springer, Switzerland, 2015, 203 p. Available at: https://doi.org/10.1007/978-3-319-14601-0.

2. Etiope G., Ciotoli G., Schwietzke S., Schoell M. Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 2019, 11, pp. 1—22. Available at: https://doi.org/10.5194/essd-11-1-2019.

3. Saunois M., Stavert A., Poulter B. et al. The Global Methane Budget 2000—2017. Earth Syst. Sci. Data 2020, 12, pp. 1561—1623. Available at: https://doi.org/10.5194/essd-12-1561-2020.

4. Biskaborn B. K., Smith S. L., Noetzli J. et al. Permafrost is warming at a global scale. Nature Communications, 2019, 10, 264. DOI: 10.1038/ s41467-018-08240-4.

5. Dean J. F. Old methane and modern climate change. Science, 2020, 367, pp. 846—848.

6. State of the Global Climate 2022. World Meteorological Organization, WMO-No. 1316. Geneva, 2023, 55 p.

7. Anisimov O. A., Zimov S. A., Volodin E. M., Lavrov S. A. Methane emission in the permafrost zone of Russia and assessment of its impact on the global climate. Meteorologiya i gidrologiya, 2020, no. 5, pp. 131—143.

8. Are F. E. The problem of emission of deep gases into the atmosphere. Cryosphere Earth, 1998, vol. 4, pp. 42—50. (In Russian).

9. Badu Yu. B. Cryogenic Strata of Gas-Bearing Structures in Yamal. On the Influence of Gas Deposits on the Formation and Development of Cryogenic Strata. Moscow, Scientific World, 2018, 232 p. (In Russian).

10. Sergienko V. I., Lobkovsky L. I., Semiletov I. P. et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the Methane Catastrophe: Some results of integrated studies in 2011. Doklady Earth Science, Pleades, 2012, vol. 446, pt. 1, pp. 1132—1137. DOI: 10.1134/S1028334X12080144.

11. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Russ. Min. Ind., 2020, pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian).

12. King L. H., MacLean B. Pockmarks on the Scotian Shelf. GSA Bull., 1970, 81 (10): pp. 3141—3148. Available at: https://doi.org/10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2.

13. Josenhans H. W., King L. H., Fader G. B. A side-scan sonar mosaic of pockmarks on the Scotian Shelf. Canadian J. of Earth Sciences, 1978, 15 (5), pp. 831—840. Available at: https://doi.org/10.1139/e78-088.

14. Hovland M. Characteristics of pockmarks in the Norwegian Trench. Marine geology, 1981, 39, iss. 1—2, pp. 103—117. Available at: https://doi.org/10.1016/0025-3227(81)90030-X.

15. Nelson C. S., Healy T. R. Pockmark-like structures on the Poverty Bay sea bed — possible evidence for submarine mud volcanism. New Zealand J. of Geology and Geophysics, 1984, vol. 27, no. 2, pp. 225—230. DOI: 10.1080/00288306.1984.10422530.

16. Judd A., Hovland M. Seabed fluid flow — impact on geology, biology and the marine environment. Cambridge, Cambridge Univ. Press, 2007, 400 p.

17. Kruglikov N. M., Kuzin I. L. Outcrops of deep gas at the Urengoyskoye field. Structural geomorphology and neotectonics of Western Siberia in connection with oil and gas potential. Proc. ZapSibNIGNI, 1973, iss. 3, pp. 96—106. (In Russian).

18. Somoza L., Medialdea T., León R., Ercilla G. et al. Structure of mud volcano systems and pockmarks in the region of the Ceuta Contourite Depositional System (Western Alborán Sea). Marine Geology, 2012, vol. 332—334, pp. 4—26. Available at: https://doi.org/10.1016/j.margeo.2012.06.002.

19. Andreassen K., Hubbard A., Winsborrow M. et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science, 2017, 356, 18 p. DOI: 10.1126/science.aal4500.

20. Tasianas A., Bunz S., Bellwald B., Hammer O., Planke S. et al. High-resolution 3D seismic study of pockmarks and shallow fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea. Marine Geology, 2018, vol. 403, pp. 247—261. Available at: https://doi.org/10.1016/j.margeo.2018.06.012.

21. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A., Sizov O. S. Earth degassing in the Artic: remote and field studies of the thermokarst lakes gas eruption. Arctic: Ecology and Economy, 2019, no. 2 (34), pp. 31—47. DOI: 10.25283/2223-4594-2019-2-31-47. (In Russian).

22. Bogoyavlensky V.  I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N. Earth Degassing in the Arctic: Comprehensive Studies of the Distribution of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal Peninsula. Arctic: Ecology and Economy, 2019, no. 4 (36), pp. 52—68. DOI: 10.25283/2223-4594-2019-4-52-68. (In Russian).

23. Bogoyavlensky V. I., Sizov O. S., Nikonov R. A., Bogoyavlensky I. V., Kargina T. A. Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions. Arctic: Ecology and Economy, 2020, no. 3 (39), pp. 6—22. DOI: 10.25283/2223-4594-2020-3-6-22. (In Russian).

24. Bogoyavlensky V. I., Sizov O. S., Nikonov R. A., Bogoyavlensky I. V. Monitoring of the methane concentration changes in the Arctic atmosphere in 2019—2021 according to the TROPOMI spectrometer data. Arctic: Ecology and Economy, 2022, vol. 12, no. 3, pp. 304—319. DOI: 10.25283/2223-4594-2022-3-304-319. (In Russian).

25. Bogoyavlensky V. I. New Data on Mud Volcanism in the Arctic on the Yamal Peninsula. Doklady Earth Sciences, 2023. Vol. 512, Part 1, pp. 847–853. DOI: 10.1134/S1028334X23601116.

26. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Yakushev V., Sevastyanov V. Permanent Gas Emission from the Seyakha Crater of Gas Blowout, Yamal Peninsula, Russian Arctic. Energies, 2021, 14, p. 5345. Available at: https://doi.org/10.3390/en14175345.

27. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences, 2021, 11, 71. Available at: https://doi.org/10.3390/geosciences11020071.

28. GOST R (Russian State Standard) No. 57123-20 (ISO 19901-2:2004): Petroleum and Natural Gas Industry. Offshore Oil and Gas Field Structures. Design under Seismic Conditions. Moscow, Standartinform, 2016, 32 p. (In Russian).

29. Aliyev Ad. A., Guliyev I. S., Dadashev F. G., Rakhmanov R. R. Atlas of mud volcanoes of the world. [S. l.], Nafta-Press, 2015, 323 p. (In Russian).

30. Yusubov N. P., Guliev I. S. Mud Volcanism and Hydrocarbon Systems of South Caspian Basin. According to Geophysical and Geochemical Researches. Baku, Elm, 2022. (In Russian).

31. Kopf A. J. Significance of mud volcanism. Rev. of Geophysics, 2002, 40, 02, p. 1005. DOI: 10.1029/2000RG000093.

32. Hart P. E., Pohlman J. W., Lorenson T. D., Edwards B. D. Beaufort Sea Deep-water gas hydrate recovery from a seafloor mound in a region of widespread BSR occurrence. In Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, 2011, 16 p. Available at: https://pubs.er.usgs.gov/publication/70156455.

33. Paull C. K., Dallimore S. R., Caress D. W. et al. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. Geochem. Geophys. Geosyst., 2015, 16, pp. 3160—3181. Available at: https://doi.org/10.1002/2015GC005928.

34. Vogt P. R., Cherkashev G., Ginsburg G., Ivanov G. et al. Haakon Mosby Mud Volcano provides unusual example of venting. EOS, 1997, vol. 78, no. 48, pp. 556—557. Available at: https://doi.org/10.1029/97EO00326.

35. Nezhdanov A. A., Novopashin V. F., Ogibenin V. V. et al. Mud volcanism in the north of Western Siberia. Sat. scientific papers of TyumenNIIgiprogaz LLC: Geology and exploration 2011. Tyumen, Flat, 2011, pp. 73—79. (In Russian).

36. Epifanov V. A. Explosive craters-funnels and the relevance of studying the role of subsoil degassing in climatic events and landscape transformations of the Quaternary period. Byulleten’ Komissii po izucheniyu chetvertichnogo perioda, 2018, no. 76, pp. 5—40. (In Russian).

37. Mironyuk S. G., Ivanova A. A., Khlebnikova O. A. Fluidogenic relief forms as indicators of oil and gas content of the shelf subsoil. Proc. 7th Int. Sci.-Pract. Conf. Marine Research and Education MARESEDU-2018. Vol. 2 (4). — Tver, OOO “PoliPRESS”, 2019, pp. 120—125. (In Russian).

38. Bogoyavlensky V. I., Bogoyavlensky I. V. Specificity of Mud Volcanic Degassing of the Earth with Catastrophic Consequences. Occupational Safety in Industry, 2022, ¹ 12, pp. 20—28. DOI: 10.24000/0409-2961-2022-12-20-28. (In Russian).

39. Agisoft Metashape User Manual Professional Edition, Version 1.6. Agisoft LLC, 2020, 172 p. Available at: www.agisoft.com/pdf/metashape-pro_1_6_en.pdf.

40. CORONA: America’s first satellite program. Ed. K. C. Ruffner. CIA. Washington, 1995, 362 p.

41. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A. Technologies for Remote Detection and Monitoring of the Earth Degassing in the Arctic: Yamal Peninsula, Neito Lake. Arctic: ecology and economy, 2018, no. 2 (30), pp. 83—93. DOI: 10.25283/2223-4594-2018-2-83-93. (In Russian).

42. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A. Digital technologies for remote detection and monitoring of the development of heaving mounds and craters of catastrophic gas blowouts in the Arctic. Arctic: Ecology and Economy, 2020, no. 4 (40), pp. 90—105. DOI: 10.25283/2223-4594-2020-4-90-105. (In Russian).

43. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N. Catastrophic gas blowout in 2020 on the Yamal Peninsula in the Arctic. Results of comprehensive analysis of aerospace RS data. Arctic: Ecology and Economy, 2021, vol. 11, no. 3, pp. 362—374. DOI: 10.25283/2223-4594-2021-3-362-374. (In Russian).

44. Porter C., Morin P., Howat I., Noh M., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J. et al. ArcticDEM. Harv. Dataverse, 2018, 1. DOI: 10.7910/DVN/OHHUKH.

45. Bogoyavlensky V. I., Erokhin G. N., Nikonov R. A., Bogoyavlensky I. V., Bryksin V. M. Study of catastrophic gas blowout zones in the Arctic based on passive microseismic monitoring (on the example of Lake Otkrytiye). Arctic: Ecology and Economy, 2020, no. 1 (37), ðð. 93—104. DOI: 10.25283/2223-4594-2020-1-93-104. (In Russian).

46. Bogoyavlensky V. I., Perekalin S. O., Boichuk V. M., Bogoyavlensky I. V., Kargina T. N. Kumzhinskoe Gas Condensate Field Disaster: reasons, results and ways of eliminating the consequences. The Arctic: Ecology and Economy, 2017, no. 1 (25), ðð. 32—46. (In Russian).

47. Edelshtein K. K., Alabyan A. M., Gorin S. L., Popryadukhin A. A. Hydrological and hydrocenical featuters of the largest lakes of the Yamal Peninsula. Trudy Karel’skogo nauchnogo tsentra Rossiiskoi akademii nauk, 2017, no. 10, pp. 3—16. Available at: https://doi.org/10.17076/lim571.

48. Chuvilin E. M., Perlova E. V., Baranov Yu. B. et al. Structure and properties of rocks in the permafrost zone of the southern part of the Bovanenkovo gas condensate field. Moscow, GEOS, 2007, 137 p.

49. Romanovsky N. N. Taliks in the area of permafrost and the scheme of their subdivision. Bull. of Moscow Univ. Series geol., 1972, no. 1, pp. 23—34.

50. Ginsburg G. D., Soloviev V. A. Geological models of gas hydrate formation. Lithology and Mineral Resourses, 1990, no. 2, pp. 76—87. (In Russian).

51. Kholodov V. N. Thermobaric conditions of the depths of sedimentary-rock basins and their fluid dynamics. Message 2. Superhigh pressures and mud volcanoes. Lithology and Mineral Resources, 2019, no. 1, pp. 44—59. (In Russian).

52. Skorobogatov V. A., Stroganov L. V., Kopeev V. D. Geological structure and gas and oil potential of Yamal. Moscow, OOO “Nedra-Businesscenter”, 2003, 352 p. (In Russian).

53. Kharakhinov V. V. Petroleum geodynamics of the West Siberian sedimentary megabasin. Russian oil and gas geology, 2019, no. 2, ðð. 5—21. DOI: 10.31087/0016-7894-2019-2-5-21. (In Russian).


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594