Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Home » Archive of journals » No. 1(29) 2018 » Some results of greenhouse gases monitoring in the Arctic region of Russia


JOURNAL: No. 1(29) 2018, p. 56-67

HEADING: Research activities in the Arctic

AUTHORS: Antonov, K.L., Markelov, Y.I., Markelov, Y.I., Buevich, A.G., Medvedev, A.N., Manzhurov, I.L.

ORGANIZATIONS: Institute of Industrial Ecology, Ural Branch of the RAS

DOI: 10.25283/2223-4594-2018-1-56-67

UDC: 504.3:504.7

The article was received on: 24.11.2017

Keywords: greenhouse gas inventory , method of fluid-air locations, monitoring, backward trajectories, Belyy island, greenhouse gases, carbon cycle

Bibliographic description: Antonov, K.L., Markelov, Y.I., Markelov, Y.I., Buevich, A.G., Medvedev, A.N., Manzhurov, I.L. Some results of greenhouse gases monitoring in the Arctic region of Russia. Arctic: ecology and economy, 2018, no. 1(29), pp. 56-67. DOI: 10.25283/2223-4594-2018-1-56-67. (In Russian).


Problems of obtaining objective and reliable data on anthropogenic sources of greenhouse gases (GHG) in the Russian Arctic and their potential contribution to the overall greenhouse effect are discussed. Development of the technologies for modeling and forecasting the average “effective” fields of GHG concentrations and emission levels based on ground monitoring data proves to be promising direction.

The results of GHG measurements in 2015-2017 summertime from a high Arctic Belyy island (Russia) are presented. The atmospheric CO2 concentration has increased by 3.1 ppm per year, which is 1.5 times higher than the mean annual global rate during last 10 years. However, the absolute CO2 levels were significantly less than the global background, which exceeded 400 ppm in 2015. The content of the other GHGs has not changed. In summer tundra ecosystem was shown to remain a local net CH4 source in comparison to marine ecosystem. The surface methane levels formed over the island were 0.04-0.07 ppm higher than those due to wind transport from the sea. Greatest effect was observed in the exceptionally hot summer of 2016, which was likely to cause the increased emission of carbon from permafrost.

To identify remote sources, the method of fluid-air locations was adapted, based on a joint analysis of backward trajectories and the results of GHG monitoring. The zone of influence of possible remote sources on the monitoring site was simulated. It covers a large area of the Arctic Circle and has a typical size of a few thousands kilometers. Constructed average “effective” field of methane concentrations indicated spatial distribution of potential sources. They are located in the regions of hydrocarbons production in the Russian Arctic. These preliminary results require verification on long-term GHG measurements.

Finance info: Исследования выполнены при финансовой поддержке Уральского отделения РАН, проекты № 15-15-2-50 и №18-9-2-25. Для измерений концентраций парниковых газов на острове Белый была частично использована аппаратура «ЦКП арктических экологических исследований ИПЭ УрО РАН»


1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds R. K. Pachauri, L. A. Meyer; IPCC. Geneva, 2014, 151 p.

2. NOAA Data Show 2016 Warmest Year on Record Globally. Eds K. Northon; NASA. [S. l.], 2017.

3. Nullis C. Provisional WMO Statement on the Status of the Global Climate in 2016. World Meteorological Organization. [S. l.], 2016.

4. Serreze M. C., Barry R. G. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 2011, vol. 77, no. 1, рр. 85—96.

5. Kawamura K., Abe-Ouchi A., Motoyama H., Ageta Y., Aoki S., Azuma N., Fujii Y., Fujita K., Fujita S., Fukui K. et. al. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Science advances, 2017, vol. 3, no. 2, e1600446. DOI: 10.1126/sciadv.1600446.

6. Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties. National ResearchCouncil. Washington, DC, The National Academies Press, 2005, 222 p.

7. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Eds T. F. Stocker et al. Cambridge: Cambridge Univ. Press, 2013, 1535 p.

8. Kiehl J. T., Trenberth K. E. Earth’s Annual Global Mean Energy Budget. Bull. of the American Meteorological Society, 1997, vol. 78, no. 2, рр. 197—208.

9. Parnikovye gazy — global’nyy ekologicheskiy resurs: spravochnoe posobie. [Greenhouse gases — a global environmental resource: a reference book]. Pod red. A. O. Kokorina. Moscow, WWF Rossii, 2004, 136 p. (In Russian).

10. Kiotskiy protokol k ramochnoy konventsii Organizatsii Ob"edinennykh Natsiy ob izmenenii klimata. [The Kyoto Protocol to the United Nations Framework Convention on Climate Change]. OON. [S. l.], 1998, 26 p. (In Russian).

11. Zavarzin G. A., Kudeyarov V. N. Pochva kak glavnyy istochnik uglekisloty i rezervuar organicheskogo ugleroda na territorii Rossii. [Soil as the key source of carbon dioxide and reservoir of organic carbon on the territory of Russia]. Vestn. Ros. akad. nauk, 2006, vol. 76, no. 1, pp. 14—24. (In Russian).

12. Blunden J., Arndt D. S. State of the Climate in 2015. Bull. Amer. Meteor. Soc., 2016, vol. 97, no. 8, рр. S1—S275.

13. WMO Statement on the State of the Global Climate in 2016. [S. l.], WMO, 2017, 26 p.

14. Baldocchi D., Falge E., Gu L., Olson R., Hollinger D., Running S., Anthoni P., Bernhofer C., Davis K., Evans R. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. of the American Meteorological Society, 2001, vol. 82, no. 11, рр. 2415—2434.

15. Canadell J. G., Mooney H. A., Baldocchi D. D., Berry J. A., Ehleringer J. R., Field C. B., Gower S. T., Hollinger D. Y., Hunt J. E., Jackson R. B., Running S. W., Shaver G. R., Steffen W., Trumbore S. E., Valentini R., Bond B. Y. Commentary: Carbon Metabolism of the Terrestrial Biosphere: A Multitechnique Approach for Improved Understanding. Ecosystems, 2000, vol. 3, no. 2, рр. 115—130.

16. Miglovets M. N., Mikhaylov O. A., Zagirova S. V. Vertikal’nye potoki SN4 i SO2 v rastitel’nykh soobshchestvakh mezooligotrofnogo bolota sredney taygi. [Vertical CH4 and CO2 fluxes in plant communities of mesooligotrophic Peatland of middle taiga]. Izv. Samar. nauch. tsentra Ros. akad. nauk, 2014, vol. 16, no. 1-1, pp. 193—197. (In Russian).

17. Zamolodchikov D. G., Grabovskiy V. I., Kraev G. N. Dinamika byudzheta ugleroda lesov Rossii za dva poslednikh desyatiletiya. [A twenty year retrospective on the forest carbon dynamics in Russia]. Lesovedenie, 2011, no. 6, pp. 16—28. (In Russian).

18. Winderlich J., Gerbig C., Kolle O., Heimann M. Inferences from CO2 and CH4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes. Biogeosciences, 2014, vol. 11, no. 7, рр. 2055—2068.

19. Timokhina A. V., Prokushkin A. S., Onuchin A. A, Panov A. V., Kofman G. B., Heimann M. Dinamika prizemnoy kontsentratsii SO2 v srednetaezhnoy podzone Prieniseyskoy Sibiri. [Variability of ground CO2 concentration in the middle taiga subzone of the Yenisei region of Siberia]. Ekologiya, 2015, no. 2, pp. 110—119. (In Russian).

20. Law B., Falge E., Gu L., Baldocchi D., Bakwin P., Berbigier P., Davis K., Dolman A., Falk M., Fuentes J. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, vol. 113, no. 1, рр. 97—120.

21. Rukovodyashchie printsipy natsional’nykh inventarizatsiy parnikovykh gazov MGEIK, 2006. [Guidelines for National Greenhouse Gas Inventories MGEIK, 2006]. [S. l.], 2006. (In Russian).

22. Kennedy C., Steinberger J., Gasson B., Hansen Y., Hillman T., Havranek M., Pataki D., Phdungsilp A., Ramaswami A., Mendez G. V. Greenhouse gas emissions from global cities. Environmental Science & Technology, 2009, vol. 43, рр. 7297—7302.

23. Krause R. M. An assessment of the greenhouse gas reducing activities being implemented in US cities. Local Environment, 2011, vol. 16, no. 2, рр. 193—211.

24. Obzor sostoyaniya i zagryazneniya okruzhayushchey sredy v Rossiyskoy Federatsii za 2016 god. [Review of the state and pollution of the environment in the Russian Federation for 2016]. Pod red. G. M. Chernogaeva. Moscow, Rosgidromet, 2017, 218 p. (In Russian).

25. Walker D. A., Raynolds M. K., Daniëls F. J., Einarsson E., Elvebakk A., Gould W. A., Katenin A. E., Kholod S. S., Markon C. J., Melnikov E. S. The circumpolar Arctic vegetation map. J. of Vegetation Science, 2005, vol. 16, no. 3, рр. 267—282.

26. Walker D., Epstein H., Raynolds M., Kuss P., Kopecky M., Frost G., Daniëls F., Leibman M., Moskalenko N., Matyshak G. et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environmental Research Letters, 2012, vol. 7, no. 1, рр. 015504 (17 pp). DOI:10.1088/1748-9326/7/1/015504.

27. Poddubny V., Nagovitsyna E. Retrieval of spatial field of atmospheric aerosol concentration according to data from local measurements: A modification of the method of back trajectory statistics. Izvestiya, Atmospheric and Oceanic Physics, 2013, vol. 49, no. 4, рр. 404—410.

28. Poddubnyy V. A., Dubinkina E. S. Zadacha o passivnoy lokatsii atmosfery vetrovymi potokami dlya otsenki poley kontsentratsii i opredeleniya istochnikov primesi. [The problem of fluid location of the atmosphere for the estimation of pollution fields and retrieval of source]. Optika atmosfery i okeana, 2017, vol. 30, no. 10, pp. 862—870. (In Russian).

29. Ashbaugh L. L., Malm W. C., Sadeh W. Z. A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmospheric Environment (1967), 1985, vol. 19, no. 8, рр. 1263—1270.

30. Stohl A. Trajectory statistics — A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmospheric Environment, 1996, vol. 30, no. 4, рр. 579—587.

31. Seibert P., Kromp-Kolb H., Baltensperger U., Jost D., Schwikowski M., Kasper A., Puxbaum H. Trajectory analysis of aerosol measurements at high alpine sites. Transport and Transformation of Pollutants in the Troposphere, 1994, vol. 15, no. 9, рр. 689—693.

32. Bogoyavlenskiy V. I., Bogoyavlenskiy I. V., Nikonov R. A. Rezul’taty aerokosmicheskikh i ekspeditsionnykh issledovaniy krupnykh vybrosov gaza na Yamale v rayone Bovanenkovskogo mestorozhdeniya. [Results of aerial, space and field investigations of large gas blowouts near Bovanenkovo field on Yamal Peninsula]. Arktika: ekologiya i ekonomika, 2017, no. 3 (23), pp. 4—17. (In Russian).

33. Bogoyavlenskiy V. I., Sizov O. S., Bogoyavlenskiy I. V., Nikonov R. A. Distantsionnoe vyyavlenie uchastkov poverkhnostnykh gazoproyavleniy i gazovykh vybrosov v Arktike: poluostrov Yamal. [Remote identification of areas of surface gas manifestations and gas emissions in the Arctic: the Yamal Peninsula]. Arktika: ekologiya i ekonomika, 2016, no. 3 (23), pp. 4—15. (In Russian).

34. Draxler R. R., Hess G. D. An Overview of the HYSPLIT-4 Modelling System for Trajectories, Dispersion and Deposition. Australian Meteorological Magazine, 1998, vol. 47, рр. 295—308.

Download »

© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594