| ||||
| ||||
|
Home » Archive of journals » Volume 15, No. 4, 2025 » The analysis of special ship ice observation data was supported by the Russian Science Foundation, grant no. 23-17-00161. THE ANALYSIS OF SPECIAL SHIP ICE OBSERVATION DATA WAS SUPPORTED BY THE RUSSIAN SCIENCE FOUNDATION, GRANT NO. 23-17-00161.JOURNAL: Volume 15, No. 4, 2025, p. 628-636HEADING: Problems of the Northern Sea Route AUTHORS: Kozlovskiy, E.V., Alekseeva, T.A., Serovetnikov, S.S., Sokolov, V.T. ORGANIZATIONS: State Research Center "Arctic and Antarctic Research Institute" DOI: 10.25283/2223-4594-2025-4-628-636 UDC: 551.467 The article was received on: 11.06.2025 Keywords: Arctic basin, special ship ice observations, sea ice thickness, sea ice concentration, sea ice age, ship TV complex Bibliographic description: Kozlovskiy, E.V., Alekseeva, T.A., Serovetnikov, S.S., Sokolov, V.T. The analysis of special ship ice observation data was supported by the Russian Science Foundation, grant no. 23-17-00161.. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 4, pp. 628-636. DOI: 10.25283/2223-4594-2025-4-628-636. (In Russian). Abstract: The paper presents the results of processing special shipboard observations of the ice cover in the Arctic basin, carried out along the route from the Franz Josef Land archipelago to the North Pole in the summer of 2024. The latitudinal distribution of ice concentration along the route of the nuclear icebreaker “50 Let Pobedy” to the North Pole is presented. The results of assessing the thickness and age composition of level ice (beyond hummocky formations) are obtained based on visual observations and using a ship TV complex. Finance info: The analysis of special ship ice observation data was supported by the Russian Science Foundation, grant no. 23-17-00161. References: 1. Serreze M. C., Barrett A. P., Stroeve J. C., Kindig D. N., Holland M. M. The emergence of surface-based Arctic amplification. The Cryosphere, 2009, vol. 3, iss. 1, pp. 11—19. 2. Kumar A., Perlwitz J., Eischeid J., Quan X., Xu T., Zhang T., Hoerling M., Jha B., Wang W. Contribution of sea ice loss to Arctic amplification. Geophysical Research Letters, 2010, vol. 37, iss. 21, CiteID L21701. DOI: 10.1029/2010GL045022. 3. Mokhov I. I., Khon V. Ch. Duration of the navigation period and its changes for the Northern Sea Route: model estimates. Arctic: Ecology and Economy, 2015, no. 2 (18), pp. 88—95. (In Russian). 4. Alekseeva T. A., Serovetnikov S. S., Frolov S. V., Sokolov V. T. Ice conditions of navigation in the Arctic Basin in summer 2018. Russian Arctic, 2018, no. 2, pp. 31—40. (In Russian). 5. Polyakov I. V., Pnyushkov A. V., Alkire M., Ashik I. M., Baumann T., Carmack E., Goszczko I., Ivanov V., Kanzow T., Krieshfield R., Kwok R., Sundfjord A., Morison J., Rember R., Yulin A. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 2017, vol. 356, iss. 6335, pp. 285—291. DOI: 10.1126/science.aai8204. 6. Timofeeva A. B. Ice conditions of navigation during the NABOS-2021 expedition in september-october 2021. Russian Arctic, 2021, no. 15, pp. 54—67. DOI: 10.24412/2658-4255-2021-4-54-67. (In Russian). 7. Haas C., Hendricks S., Eicken H., Herber A. Synoptic airborne thickness surveys reveal state of Arctic Sea ice cover. Geophysical Research Letters, 2010, 37, 9. Available at: https://doi.org/10.1029/2010GL042652. 8. Krumpen T., Goessling H., Sellmann M. IceBird 2018. Summer Campaign. Sea ice thickness measurements with Polar 6 from Station Nord and Alert. Campaign report. Bremenhaven, 2018. Available at: https://doi.org/10013/epic.96923a78-d232-4bd8-82f4-337799d2fa07. 9. Belter H. J., Krumpen T., von Albedyll L., Alekseeva T. A., Frolov S. V., Hendricks S., Herber A., Polyakov I. V., Raphael I., Ricker, R., Serovetnikov S. S., Webster M., Haas C. Interannual variability in Transpolar Drift ice thickness and potential impact of Atlantification. The Cryosphere, 2021, 15, pp. 2575—2591. Available at: https://doi.org/10.5194/tc-15-2575-2021. 10. Chunyu Pang, Lele Li, Lili Zhan, Haihua Chen, Yingni Shi. Estimation of Arctic Sea Ice Thickness Using HY-2B. Altimeter Data. Remote Sens., 2024, 16, p. 4565. Available at: https://doi.org/10.3390/rs16234565. 11. Chen F., Wang D., Zhang Y., Zhou Y., Chen C. Intercomparisons and Evaluations of Satellite-Derived Arctic Sea Ice Thickness Products. Remote Sens., 2024, 16, p. 508. Available at: https://doi.org/10.3390/ rs16030508. 12. Jiang M., Zhong W., Xu K., Jia Y. Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data. Remote Sens., 2023, 15, p. 1180. Available at: https://doi.org/10.3390/rs15051180. 13. Production of special ship ice observations. Methodological manual. Ed. by T. A. Alekseeva. St. Petersburg, AARI, 2025, 48 p. (In Russian). 14. Serovetnikov S. S., Frolov S. V., Klejn A. E. Ship-based television complex — the program for automatic sea ice thickness monitoring. Russian Arctic, 2018, no. 2, pp. 41—55. Available at: https://doi.org/10.24411/26584255-2018-00017. (In Russian). 15. Winsor P. Arctic Sea ice thickness remained constant during the 1990s. Geophysical Research Letters, 2001, vol. 28, iss. 6, pp. 1039—1042. Available at: https://doi.org/10.1029/2000GL012308. 16. Kwok R. Near zero replenishment of the Arctic multiyear sea ice cover at the end of 2005 summer. Geophysical Research Letters, 2007, vol. 34, iss. 5. Available at: https://doi.org/10.1029/2006GL028737. 17. Zhang J., Lindsay R., Steele M., Schweiger A. What drove the dramatic retreat of arctic sea ice during summer 2007? Geophysical Research Letters, 2008, vol. 35, iss. 11. Available at: https://doi.org/10.1029/2008GL034005. 18. Perovich D. K., Light B., Eicken H., Jones K. F., Runciman K., Nghiem S. V. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979—2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters, 2007, vol. 34, iss. 19. Available at: https://doi.org/10.1029/2007GL031480. 19. Ivanov V. V., Alexeev V. A., Alexeeva T. A., Koldunov N. V., Repina I. A., Smirnov A. V. Does Arctic Ocean Ice Cover Become Seasonal? Earth Exploration from Space, 2013, no. 4, pp. 50—65. DOI: 10.7868/S0205961413040076. (In Russian). 20. Kwok R., Untersteiner N. The thinning of Arctic sea ice. Phys. Today, 2011, vol. 41. pp. 36—41. DOI: 10.1063/1.3580491. Download » | ||||
|
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|