Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 15, No. 4, 2025 » Peculiarities of the composition and properties of ash and slag waste from the Apatity Thermal Power Plant, Murmansk Region

PECULIARITIES OF THE COMPOSITION AND PROPERTIES OF ASH AND SLAG WASTE FROM THE APATITY THERMAL POWER PLANT, MURMANSK REGION

JOURNAL: Volume 15, No. 4, 2025, p. 619-627

HEADING: Regional problems

AUTHORS: Krasavtseva, E.A., Ivanova, L.A.

ORGANIZATIONS: Polar Alpine Botanical Garden and Institute of the Kola Science Centre of the RAS, Kola Science Center of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2025-4-619-627

UDC: 622.011.4

The article was received on: 19.05.2025

Keywords: rare earth elements, ash dumps, engineering-geological characteristics, X-ray phase analysis, material composition

Bibliographic description: Krasavtseva, E.A., Ivanova, L.A. Peculiarities of the composition and properties of ash and slag waste from the Apatity Thermal Power Plant, Murmansk Region. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 4, pp. 619-627. DOI: 10.25283/2223-4594-2025-4-619-627. (In Russian).


Abstract:

The stored waste of coal power facilities has a negative impact on the components of the environment. The article presents the results of the study of the composition and properties of the ash and slag mixture of the Apatity TPP, Murmansk Region. Samples of coal combustion waste were collected and studied. Engineering and geological characteristics and granulometric composition of the samples were determined. X-ray phase analysis of the samples was carried out. The chemical composition of the waste was determined. The results of the study indicate the likelihood of dust formation on the surface of the ash and slag dump during the snowless season. The established content of rare earth elements suggests the possibility of considering the accumulated waste as a technogenic raw material for the subsequent extraction of valuable components.


Finance info: The study was carried out with the support of the Russian Science Foundation grant No. 25-27-00094 “Ecological substantiation of the technology for stabilizing dusty surfaces of ash dumps using non-traditional ameliorants based on sewage sludge in the conditions of the Kola North”, https://rscf.ru/project/25-27-00094/.

References:

1. Shumilova L., Khatkova À., Razmakhnin Ê., Nomokonova Ò. Application of the best available technologies to improve environmental safety in the disposal of ash and slag waste. Transbaikal State University J., 2021, vol. 28, no. 8, pp. 23—34. DOI: 10.21209/2227-9245-2022-28-8-23-34. (In Russian).

2. Yatsenko E. A., Smolii V. A., Klimova L. V. et al. Solid Fuel Combustion Wastes at CHPP in the Arctic Zone of the Russian Federation: Utility in Eco-Geopolymer Technology. Glass Ceram., 2022, vol. 78., pp. 374—377. DOI: 10.1007/s10717-022-00414-3.

3. Yatsenko E. A., Goltsman B. M., Novikov Y. V. et al. Study into the Possibilities of Synthesis of Foamed Geopolymer Materials Based on Ash and Slag Waste from Thermal Power Plants of the Russian Federation’s Arctic Zone. Glass Phys. Chem., 2022, vol. 48, pp. 429—435. DOI: 10.1134/S1087659622600260.

4. Cherentsova A. A., Olesik S. M. Assessment of ash and slag waste as a source of environmental pollution and as a source of secondary raw materials. Mining information and analytical bulletin (scientific and technical journal), 2013, vol. 3, pp. 230—243. (In Russian).

5. Khudyakova L. I., Garkusheva N. M., Kotova I. Yu., Paleev P. L. Possibility of reclamation of ash dumps. Bulletin of Tomsk Polytechnic University. Engineering of georesources, 2024, vol. 335, no. 2, pp. 37—47. DOI: 10.18799/24131830/2024/2/4196. (In Russian).

6. Kravchenko J., Lyerly H. K. The impact of coal-powered electrical plants and coal ash impoundments on the health of residential communities. North Carolina Medical J., 2018, vol. 79, pp. 289—300. DOI: 10.18043/ncm.79.5.289.

7. Pichugin E. A. Analytical review of the accumulated experience in the Russian Federation of involving ash and slag waste from thermal power plants in economic circulation. Problems of regional ecology, 2019, no. 4, pp. 77—87. DOI: 10.24411/1728-323X-2019-14077. (In Russian).

8. Slukovskii Z., Dauvalter V., Guzeva A. et al. The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia. Water, 2020, vol. 12, p. 1130. DOI: 10.3390/w12041130.

9. Bespolitov D. V., Shavanov N. D., Pankov P. P. et al. Study of the composition and properties of ash and slag waste for the purpose of their utilization in the construction industry. Issues of modern science and practice. Vernadsky University, 2022, no. 3 (85), pp. 23—31. DOI: 10.17277/voprosy.2022.03.pp.023-031. (In Russian).

10. Yao Z. T., Ji X. S., Sarker P. K. et al. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 2015, vol. 141., pp. 105—121. DOI: 10.1016/j.earscirev.2014.11.016.

11. Asl S. M. H., Javadian H., Khavarpour M. et al. Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. J. Clean. Prod., 2019, vol. 208, pp. 1131—1147. DOI: 10.1016/j.jclepro.2018.10.186.

12. Yatsenko E. A., Goltsman B. M., Parshukov V. I. Analysis of suitability of TPP ash-slag waste as materials for hydrogen fuel storage. Intern. J. Hydrogen Energy, 2022, vol. 47 (6), pp. 3906—3917. DOI: 10.1016/j.ijhydene.2021.10.272.

13. Smolii V. A., Kosarev A. S., Yatsenko E. A. Ash-Slag Based Cellular Glass for Energy-Efficient 3-Ply Construction Panels. Glass Ceram., 2019, vol. 76., pp. 105—108. DOI: 10.1007/s10717-019-00143-0.

14. Rusina V. V., Sokolov A. A., Ryabikov V. M. Concrete using fuel waste. Construction: new technologies — new equipment, 2019, no. 4, pp. 35—37. (In Russian).

15. Hanif À., Lu Z., Li Z. Utilization of fly ash cenosphere as lightweight filler in cement-based composites — A review. Construction and Building Materials, 2017, vol. 144, pp. 373—384. DOI: 10.1016/j.conbuildmat.2017.03.188.

16. Shubov L. Ya., Skobelev K. D., Doronkina I. G., Dubrovin K. E. On the use of ash and slag waste from thermal power plants in road construction. Ecology. Industry. Production, 2020, no. 1 (109), pp. 6—9. (In Russian).

17. Collins F., Rozhkovskaya A., Outram J. G., Millar G. J. A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials, 2020, vol. 291, p. 109667. DOI: 10.1016/j.micromeso.2019.109667.

18. Muriithi G. N., Petrik L. F., Doucet F. J. Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. J. of CO2 Utilization, 2020, vol. 36, pp. 220—230. DOI: 10.1016/j.jcou.2019.11.016.

19. Ram L., Masto R. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments. Earth-Science Reviews, 2013, vol. 128, pp. 52—74. DOI: 10.1016/j.earscirev.2013.10.003.

20. Dahiya H. S., Budania Y. K. Prospects of Fly Ash Application in Agriculture: A Global Review Int. J. Curr. Microbiol. App. Sci., 2018, vol. 7 (10), pp. 397—409. DOI: 10.20546/ijcmas.2018.710.043.

21. Mushtaq F., Zahid M., Bhatti I. A. et al. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manage., 2019, vol. 240, pp. 27—46. DOI: 10.1016/j.jenvman.2019.03.054.

22. Gorbacheva T. T., Mayorov D. V. Sorption of ammonium ions from aqueous solutions on ash and slag of thermal power plants. Chemistry of solid fuel, 2022, no. 4, pp. 45—53. DOI: 10.31857/S0023117722040041. (In Russian).

23. Cherkasova E. V., Tikhomirova A. V., Cherkasova T. G., Golovachev A. A. Isolation of concentrates of rare and rare earth elements from ash and slag waste of Kuzbass. Bull. of the Kuzbass State Technical University, 2021, no. 2, pp. 35—39. (In Russian).

24. Taskin A. V. Analysis of the chemical composition of ash and slag waste from thermal power plants in the Far Eastern region as technogenic deposits of precious metals. Mining information and analytical bulletin (scientific and technical journal), 2014, no. S4, pp. 259—271. (In Russian).

25. Zhang W., Noble A., Yang X., Honaker R. A Comprehensive Review of Rare Earth Elements Recovery from Coal-Related Materials. Minerals, 2020, vol. 10, p. 451. DOI: 10.3390/min10050451.

26. Davydov D. A., Redkina V. V. Algae and cyanoprokaryotes in the areas of self-overgrowing of ash dumps of the thermal power plant of the city of Apatity (Murmansk region). Transactions of the Karelian Scientific Center of the Russian Academy of Sciences, 2021, no. 1, pp. 51—68. (In Russian).

27. Maiti D., Prasad B. Revegetation of fly ash — a review with emphasis on grass-legume plantation and bioaccumulation of metals. Appl. Ecol. Environ. Res., 2016, vol. 14 (2), pp. 185—212. DOI: 10.15666/aeer/1402_185212.

28. Kozhukhova N. I., Zhernovsky I. V., Fomina E. V. Phase formation in geopolymer systems based on fly ash from Apatity TPP. Construction materials, 2015, no. 12, pp. 85—88. (In Russian).

29. Arkhipov A. V., Reshetnyak S. P. Technogenic deposits. Development and formation: Monograph. Apatity, KSC RAS, 2017, 175 p. (In Russian).

30. GOST 5180-2015. Soils. Laboratory methods for determining physical characteristics. Moscow, Standartinform, 2016, 19 p. (In Russian).

31. Krasavtseva E. A., Maksimova V. V. Specificity of Composition and Properties of Umbozero Loparite Concentration Tailings. J. of Mining Science, 2024, vol. 60, no. 4, pp. 639—648. DOI: 10.1134/S1062739124040100.

32. GOST 25100-2020. Soils. Classification. Moscow, Standartinform, 2020, 38 p. (In Russian).

33. Mayorov D. V., Gorbacheva T. T. Structural and surface and acid-base properties of thermal power plant ash and slag. Theoretical and Applied Ecology, 2022, no. 4, pp. 104—110. DOI: 10.25750/1995-4301-2022-4-104-110.

34. Aleksandrova T. N., Prokhorov K. V. Complex processing of ash and slag waste as a factor in ensuring environmental safety. Mining information and analytical bulletin (scientific and technical journal), 2012, vol. 10, pp. 283—288. (In Russian).

35. Ksenofontov B., Butorova I., Kozodaev A. et al. Problems of ash and slag waste toxicity. Ecology and Industry of Russia, 2017, vol. 21, no. 2, pp. 4—9. DOI: 10.18412/1816-0395-2017-2-4-9. (In Russian).

36. Yatsenko E. A., Goltsman B. M., Trofimov S. V. et al. Processing of Ash and Slag Waste from Coal Fuel Combustion at CHPPs in the Arctic Zone of Russia with Obtaining Porous Geopolymer Materials. Therm. Eng., 2022, vol. 69, pp. 615—623. DOI: 10.1134/S0040601522070102.

37. Gorbacheva T. T., Mayorov D. V. TPP Ashes as a Sorbent for Waste Water Purification from Ammonium Ions. Therm. Eng., 2022, vol. 69, pp. 210—216. DOI: 10.1134/S0040363622030043.


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594