Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 15, No. 3, 2025 » Computation of ocean and sea ice state parameters for the Arctic

COMPUTATION OF OCEAN AND SEA ICE STATE PARAMETERS FOR THE ARCTIC

JOURNAL: Volume 15, No. 3, 2025, p. 127-136

HEADING: Problems of the Northern Sea Route

AUTHORS: Butakov, N.Y., Rubinshtein, K.K., Ignatov, R.Y.

ORGANIZATIONS: Nuclear Safety Institute of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2025-3-127-136

UDC: 551.467

The article was received on: 25.11.2024

Keywords: sea ice, Northern Sea Route, numerical modeling, ocean

Bibliographic description: Butakov, N.Y., Rubinshtein, K.K., Ignatov, R.Y. Computation of ocean and sea ice state parameters for the Arctic. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 3, pp. 127-136. DOI: 10.25283/2223-4594-2025-3-127-136. (In Russian).


Abstract:

The authors have implemented a coupled system for forecasting ocean and sea ice parameters for the Northern Sea Route area. They have used the ROMS model to calculate ocean parameters, and the CICE model to calculate sea ice parameters. The quality of the first calculation results has been evaluated. The evaluation of the calculation quality has shown that the calculation results generally agree satisfactorily with the empirical data, but there are errors in the sea surface temperature forecast in the west of the calculation area. The ROMS-CICE model calculations can help shipping companies and the Northern Sea Route operators in optimizing routes and reducing risks associated with sea ice, assist in developing Arctic logistics and infrastructure, and ensure the safety of oil and gas facilities. Environmental organizations can use this data to monitor ice cover and its impact on ecosystems.


References:

1. Potravny I. M., Elsakov V. V. Analysis of trends in the development of traditional trades of indigenous peoples in the context of climate change (using the example of the Novosibirsk Islands and the coastal Arctic regions of Yakutia). Arctic: Ecology and Economy, 2024, vol. 14, no. 2, pp. 301—311. DOI: 10.25283/2223-4594-2024-2-301-311. (In Russian).

2. Kuznetsov M. V., Getsov A. A., Lukina S. M. Problematic Issues Related to the Need to Overcome the Consequences of Radioactive Contamination of the Ecosystem in the Arctic Zone of the Russian Federation. Innovative Science, 2023, no. 3—1, pp. 51—52. (In Russian).

3. Kumar R., Li J., Hedstrom K., Babanin A. V., Tang Y. Intercomparison of Arctic sea ice simulation in ROMS-CICE and ROMS-Budgell. Polar Sci., 2021, 29, p. 100716. DOI: 10.1016/j.polar.2021.100716.

4. Ushakov K. V., Grankina T. B., Ibrayev R. A., Gromov I. V. Simulation of Arctic and North Atlantic ocean water and ice seasonal characteristics by the INMIO-CICE coupled model. IOP Conference Series: Earth and Environmental Science, 2016, 48, p. 012013. DOI: 10.1088/1755-1315/48/1/012013.

5. Johnson M. et al. Evaluation of Arctic Sea Ice Thickness Simulated by AOMIP Models. [S. l.], 2011.

6. Johnson M. et al. A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. [S. l.], 2007.

7. Hedstrom K. S. Technical Manual for a Coupled Sea-Ice/Ocean Circulation Model (Version 5). 2010. Available at: https://www.myroms.org/wiki/images/3/3b/Manual_2010.pdf.

8. CICE Consortium. CICE Documentation. Version 6.2.0. 2021. Available at: https://cice-consortium-cice.readthedocs.io/.

9. Thompson G., Field P. R., Rasmussen R. M., Hall W. D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Pt. II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 2008, 136, pp. 5095—5115. DOI: 10.1175/2008MWR2387.1.

10. Iacono M. J., Delamere J. S., Mlawer E. J., Shephard M. W., Clough S. A., Collins W. D. Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 2008, 113, D13103. DOI: 10.1029/2008JD009944.

11. Nakanishi M., Niino H. An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Bound. Layer Meteor., 2006, 119, pp. 397—407. DOI: 10.1007/s10546-005-9030-8.

12. Niu Guo-Yue, Yang Zong-Liang,  Mitchell K. E., Chen Fei, Ek M. B., Barlage M., Kumar A., Manning K., Niyogi D., Rosero E., Tewari M., Xia Youlong. The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res., 2011, p. 116.

13. Kain J. S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 2004, 43, pp. 170—181. DOI: 10.1175/1520-0450(2004)0432.0.CO;2.

14. Warner J. C., Sherwood C. R., Arango H. G., Signell R. P. Performance of four turbulence closure methods implemented using a generic length scale method, Ocean Modelling, 2005, 8, pp. 81—113.

15. Chapman D. C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 1985, 15, pp. 1060—1075.

16. Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J. Comp. Sci., 1976, 21 (3), pp. 251—269.

17. Bitz C. M., Lipscomb W. H. An energy-conserving thermodynamic sea ice model for climate study. J. Geophys. Res. Oceans, 1999, 104 (C7), pp. 15669—15677.

18. Marchesiello P., McWilliams J. C., Shchepetkin A. F. Open boundary conditions for long-term integration of regional ocean models. Ocean Modelling, 2001, 3, pp. 1—20.


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594