| ||||
| ||||
Home » Archive of journals » Volume 15, No. 2, 2025 » Evidence of the 1783 Laki eruption in light annual rings of larch from high latitudes of Siberia EVIDENCE OF THE 1783 LAKI ERUPTION IN LIGHT ANNUAL RINGS OF LARCH FROM HIGH LATITUDES OF SIBERIAJOURNAL: Volume 15, No. 2, 2025, p. 265-276HEADING: Study and development of nature resources of the Arctic AUTHORS: Gurskaya, M.A. ORGANIZATIONS: Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences DOI: 10.25283/2223-4594-2025-2-265-276 UDC: 582.475:551.212:551.583.16(211-17) The article was received on: 14.01.2025 Keywords: volcano, climate change, larch, light annual rings, high latitudes of Siberia Bibliographic description: Gurskaya, M.A. Evidence of the 1783 Laki eruption in light annual rings of larch from high latitudes of Siberia. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 2, pp. 265-276. DOI: 10.25283/2223-4594-2025-2-265-276. (In Russian). Abstract: The eruption of the Laki volcano in 1783 had a significant impact on climate, human society and biota of Europe. For the first time, the author analyzed data on adverse events of the summer period of 1783 based on changes in the anatomical structure of annual rings of larches growing in the high latitudes of Siberia. Cores of northern larches were collected at 32 sites along a 4000 km long forest-tundra transect. In 1783 tree rings with abnormal anatomical structure of latewood — so called light rings — were formed on the trees at almost every site. Based on the light rings, the author considered weather features of the vegetation period in the high latitudes of Siberia and identified areas with a similar distribution of adverse weather events. The obtained knowledge of the influence of large volcanic eruptions in Iceland on the climate of the Siberian forest tundra makes it possible to assess the potential effects of future similar large eruptions on the biota and human socio-economic activity in the high latitudes of Siberia. Finance info: The IPAE UD RAS supported the research within the state assignment “Tree-ring chronologies in the development of fundamental and applied environmental problems of the Urals and Siberia” No. 122021000093-6. The author expresses gratitude to the member of the International Dendrochronological Expedition of 1992 within the framework of the Siberian Subarctic Project, Doctor of Biological Sciences V. S. Mazepa for providing part of the collected material. References: 1. Sigl M., Winstrup M., McConnell J. R, Welten K. C. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 2015, vol. 523, no. 7562, pp. 543—549. Available at: https://doi.org/10.1038/nature14565. 2. Robock A. Volcanic eruptions and climate. Reviews of geophysics, 2000, vol. 38, no. 2, pp. 191—219. Available at: https://doi.org/10.1029/1998RG000054. 3. Schneider D. P., Ammann C. M., Otto-Bliesner B. L., Kaufman D. S. Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. of Geophysical Research: Atmospheres, 2009, vol. 114, iss. D15. Available at: https://doi.org/10.1029/2008JD011222. 4. Sigl M., McConnell J. R., Layman L. et al. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J. of Geophysical Research: Atmospheres, 2013, vol. 118, no. 3, pp. 1151—1169. Available at: https://doi.org/10.1029/2012JD018603. 5. Crowley T. J., Quinn T. M., Taylor F. W. et al. Evidence for a volcanic cooling signal in a 335-year coral record from New Caledonia. Paleoceanography, 1997, vol. 12, iss. 5, pp. 633—639. Available at: https://doi.org/10.1029/97PA01348. 6. D’Arrigo R. D., Jacoby G. C. Northern North American tree-ring evidence for regional temperature changes after major volcanic events. Climatic Change, 1999, vol. 41, no. 1, pp. 1—15. Available at: https://doi.org/10.1023/A:1005370210796. 7. Shiyatov S. G. Dendrochronology of the upper forest boundary in the Urals. Moscow, Nauka, 1986, 136 p. (In Russian). 8. Briffa K. R., Jones P. D., Schweingruber F. H., Osborn T. J. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 1998, vol. 393, no. 6684, pp. 450—455. Available at: https://doi.org/10.1038/30943. 9. Battipaglia G., Cherubini P., Saurer M. [et al]. Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests. Global Change Biology, 2007, vol. 13, no. 6, pp. 1122—1137. Available at: https://doi.org/10.1111/j.1365-2486.2007.01350.x. 10. Anchukaitis K. J., Breitenmoser P., Briffa K. R. [et al]. Tree rings and volcanic cooling. Nature Geoscience, 2012, vol. 5, no. 12, pp. 836—837. Available at: https://doi.org/10.1038/ngeo1645. 11. Filion L., Payette S., Gauthier L., Boutin Y. Light rings in subarctic conifers as a dendrochronological tool. Quaternary Research, 1986, vol. 26, no. 2, pp. 272—279. Available at: https://doi.org/10.1016/0033-5894(86)90111-0. 12. Gurskaya M. A. Use of larch light rings for an evaluation of volcanic explosivity index. Izvestiya. Atmospheric and Oceanic Physics, 2018, vol. 53, pp. 769—780. Available at: https://doi.org/10.1134/S0001433817080060. 13. Hantemirov R., Gorlanova L., Bessonova V. [et al]. A 4500-Year Tree-Ring Record of Extreme Climatic Events on the Yamal Peninsula. Forest, 2023, vol. 14, no. 3, p. 574. Available at: https://doi.org/10.3390/f14030574. 14. Gurskaya M. A., Benkova V. E. Types of light rings in Larix sibirica and L. gmelinii at the upper forest boundary in the Ural-Siberian Subarctic. Botanical J., 2013, vol. 98, no. 8, pp. 1037—1054. (In Russian). 15. Wang F., Arseneault D., Boucher É. [et al]. Temperature sensitivity of blue intensity, maximum latewood density, and ring width data of living black spruce trees in the eastern Canadian taiga. Dendrochronologia, 2020, vol. 64, p. 125771. Available at: https://doi.org/10.1016/j.dendro.2020.125771. 16. Stothers R. B. The great fog of 1783. Climatic change, 1996, vol. 32, pp. 79—89. Available at: https://doi.org/10.1007/BF00141279. 17. Thordarson T., Self S. Atmospheric and environmental effects of the 1783—1784 Laki eruption: A review and reassessment. J. of Geophysical Research: Atmospheres, 2003, vol. 108, iss. D1, p. AAC-7. Available at: https://doi.org/10.1029/2001JD002042. 18. Grattan J. P., Pyatt F. B. Volcanic eruptions dry fogs and the European palaeoenvironmental record: localised phenomena or hemispheric impacts? Glob Planet Change, 1999, vol. 2, pp. 173—179. Available at: https://doi.org/10.1016/S0921- 8181(99)00013-2. 19. Wieners C. E., Hálfdanarson G. “More poison than words can describe”: what did people die of after the 1783 Laki eruption in Iceland? Natural Hazards Earth System Sciences, 2024, iss. 24, pp. 2971—2994. Available at: https://doi.org/10.5194/nhess-24-2971-2024. 20. Hellman G. The Laki volcanic eruption of 1783—1784: a reappraisal and reinterpretation of the consequences of the event in Europe. Villain or fall guy? Doctoral dissertation, Université Rennes 2, 2021, 543 p. 21. Witham S., Oppenheimer C. Mortality in England during the 1783–4 Laki Craters eruption. Bull. of Volcanology, 2004, vol. 67, pp. 15—26. Available at: https://doi.org/10.1007/s00445-004-0357-7. 22. Auker M. R., Sparks R. S. J., Siebert L., Crosweller H. S., Ewert J. A statistical analysis of the global historical volcanic fatalities record. J. of Applied Volcanology, 2013, vol. 2, no. 1, pp. 1—24. Available at: https://doi.org/10.1186/2191-5040-2-2. 23. Newhall C. A., Self S. The volcanic explosivity index (VEI): an estimate of the explosive magnitude for historical volcanism. J. of Geophysical Research, 1982, vol. 87, pp. 1231—1238. Available at: https://doi.org/10.1029/JC087iC02p01231. 24. Siebert L., Simkin T., Kimberly P. Volcanoes of the World. [S. l.], University of California Press, 2011. — 550 p. 25. The Smithsonian Institution’s Global Volcanism Program. Available at: http://volcano.si.edu. 26. Golubchikov Yu. N. Geography of mountain and polar countries. Moscow, Moscow Univ. Press, 1996, 304 p. (In Russian). 27. Stokes M. A. An introduction to tree-ring dating. Chicago, University of Chicago, 1996, 73 p. 28. Vaganov E. A., Shashkin A. V., Sviderskaya L. V., Vysotskaya L. G. Histometric analysis of woody plant growth. Novosibirsk, Nauka, 1985, 105 p. (In Russian). 29. Gurskaya M. A. Effect of summer monthly temperatures on light tree ring formation in three larch species (Larix) in the northern forest–tundra of Siberia. Russian J. of Ecology, 2019, no. 50, pp. 343—351. Available at: https://doi.org/10.1134/S1067413619040088. 30. Gurskaya M. A., Hallinger M., Eckstein D., Wilmking M. Extreme cold summers in western Siberia, concluded from light-rings in the wood of conifers. Phyton (Horn), 2012, vol. 52, no. 1, pp. 101—119. 31. Vitas A. Climatically induced light rings of European larch (Larix decidua Mill.) in Lithuania. Trees, 2018, vol. 32, no. 3, pp. 791—800. Available at: https://doi.org/10.1007/s00468-018-1672-5. 32. Grattan J., Brayshay M., Sadler J. Modelling the distal impacts of past volcanic gas emissions. Evidence of Europe-wide environmental impacts from gases emitted during the eruption of Italian and Icelandic volcanoes in 1783 [Vers la modélisation des impacts distaux des gaz d’anciennes éruptions volcaniques. Exemples européens liés à l’activité de volcans italiens et islandais en 1783]. Quaternaire, 1998, vol. 9, no. 1, pp.25—35. 33. Borisenkov Ye. P., Pasetskiy V. M. Chronicle of extraordinary natural phenomena over 2.5 millennia. Leningrad, Gidrometeoizdat, 2003, 536 p. (In Russian). 34. Myglan V. S. Climate and society of Siberia during the Little Ice Age. Krasnoyarsk, SSU, 2010, 230 p. (In Russian). 35. Hang X., Sun Z., He J. [et al]. Temporal and Spatial Effects of Extreme Drought Events on Human Epidemics over Ancient China in 1784—1787 CE. Environmental Health, 2025, 24 (1), pp. 1—16. Available at: https://doi.org/10.1186/s12940-025-01163-w. 36. Jacoby G. C., Workman K. W., D’Arrigo R. D. Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews, 1999, vol. 18, no. 12, pp. 1365—1371. 37. Vaganov Ye. A., Shiyatov S. G., Mazepa V. S. Dendroclimatic studies in the Ural-Siberian subarctic. Novosibirsk, Novosibirsk branch of the Federal State Unitary Enterprise “Academic Scientific Publishing and Book Distribution Center “Nauka”, 1996, 246 p. (In Russian). 38. Edwards J., Anchukaitis K. J., Zambri B. [et al]. Intra-annual climate anomalies in northwestern North America following the 1783—1784 CE Laki eruption. J. of Geophysical Research: Atmospheres, 2021, vol. 126, iss. 3, p. e2020JD033544. Available at: https://doi.org/10.1029/2020JD033544. 39. Klimenko V. V., Matskovsky V. V., Dahlmann D. Comprehensive reconstruction of the temperature of the Russian Arctic over the past two millennia. Arctic: Ecology and Economy, 2013, vol. 4, no. 12, pp. 84—95. (In Russian). 40. Oman L., Robock A., Stenchikov G. L. [et al]. Modeling the distribution of the volcanic aerosol cloud from the 1783—1784 Laki eruption. J. of Geophysical Research: Atmospheres, 2006, vol. 111, no. D12. Available at: https://doi.org/10.1029/2005JD006899. 41. Timofeev Yu. M. Studies of the Earth’s atmosphere using the transparency method. St. Petersburg, Nauka, 2016, 367 p. (In Russian). 42. Stevenson D. S., Johnson C. E., Highwood E. J. [et al]. Atmospheric impact of the 1783—1784 Laki eruption. Part I: Chemistry modelling. Atmospheric chemistry and physics, 2003, vol. 3, no. 3, pp. 487—507. Available at: https://doi.org/10.5194/acp-3-487-2003. 43. Zambri B. Robock A., Mills M. J., Schmidt A. Modeling the 1783—1784 Laki eruption in Iceland: 2. Climate impacts. J. of Geophysical Research: Atmospheres, 2019, vol. 124, no. 13, pp. 6770—6790. Available at: https://doi.org/10.1029/2018JD029554. 44. Shindell D. T., Schmidt G. A., Mann M. E., Faluvegi G. Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. of Geophysical Research: Atmospheres, 2004, vol. 109, iss. D5. Available at: http://doi.org/10.1029/2003JD004151. 45. Gurskaya M. A. Influence of atmospheric circulation on the formation of light rings in larch wood in the Siberian Subarctic. Journal of the Siberian Federal University. Biology, 2022, vol. 15, no. 2, pp. 167—182. Available at: http://doi.org/10.17516/1997-1389-0381. (In English). Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|