Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 15, No. 2, 2025 » Dynamics, distribution and climatic conditions of retrogressive thaw slumps development in the western part of the Yamal Peninsula (2007—2023)

DYNAMICS, DISTRIBUTION AND CLIMATIC CONDITIONS OF RETROGRESSIVE THAW SLUMPS DEVELOPMENT IN THE WESTERN PART OF THE YAMAL PENINSULA (2007—2023)

JOURNAL: Volume 15, No. 2, 2025, p. 177-190

HEADING: Research activities in the Arctic

AUTHORS: Sizov, O.S., Mironova, M.A.

ORGANIZATIONS: Oil and Gas Research Institute of RAS, Gubkin Russian State University of Oil and Gas (National Research University)

DOI: 10.25283/2223-4594-2025-2-177-190

UDC: 502.57+528.88+551.435.5

The article was received on: 15.01.2025

Keywords: remote sensing of the Earth, climate change, Yamal peninsula, permafrost, massive ice, retrogressive thaw slumps (RTS)

Bibliographic description: Sizov, O.S., Mironova, M.A. Dynamics, distribution and climatic conditions of retrogressive thaw slumps development in the western part of the Yamal Peninsula (2007—2023). Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 2, pp. 177-190. DOI: 10.25283/2223-4594-2025-2-177-190. (In Russian).


Abstract:

Retrogressive thaw slumps (RTSs) pose a significant hazard during the development of oil and gas fields on the Yamal Peninsula. The authors determine the dynamics and spatial distribution of retrogressive thaw slumps in the western part of the peninsula using multi-temporal highly detailed space images. They have established that large-scale activation of thermodenudation in this region occurs only in certain years under a unique or rather rare combination of natural and anthropogenic conditions. Having analyzed the archive of urgent meteorological observations at Marresale station for the last 55 years the researchers have identified the key combination of climatic conditions that contribute to the wide development of landslide processes. Such a combination is the early and stable onset of a warm period, elevated air temperatures and precipitation during the summer months (with a steady trend of their increase). The study has contributed to the development of a climatic index of the thermodenudation development risk (CPORT or TDRCI) that takes into account the duration of the period of active temperatures and the sum of precipitation during the warm period of the year. The proposed index unambiguously reflects both extreme retrogressive thaw slumps events in Yamal in 1989 and 2012. In the future, it is possible to validate the index using other northern regions of Western Siberia as an example. A coordinated accounting of meteorological observation data, morphometric parameters of the relief and features of the sheet ice spatial distribution in a given territory creates prerequisites for the practical implementation of a system of monitoring and forecasting the intensity of retrogressive thaw slumps’ development both at the regional and local levels of individual industrial objects.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic “Improving the efficiency and environmental safety of the hydrocarbon resources development of the shelf and defining the land of the Arctic and Subarctic zones of the Earth in a changing climate” (no. 125020501403-7).

References:

1. Leibman M. O., Kizyakov A. I. Retrogressive thaw slumps of Yamal and Yugorsky Peninsula. Moscow, Institute of the Earth’s Cryosphere SB RAS, 2007, 206 p. (In Russian).

2. Pizhankova E. I. Thermodenudation in the coastal zone of the Lyakhovsky Islands (results of decoding aerospace images). Earth Cryosphere, 2011, no. 15 (3), pp. 61—70. (In Russian).

3. Günther F., Overduin P. P., Yakshina I. A., Opel T., Baranskaya A. V., Grigoriev M. N. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. The Cryosphere, 2015, ¹ 9 (1), pp. 151—178.

4. Lantuit H., Pollard W. H., Couture N., Fritz M., Schirrmeister L., Meyer H., Hubberten H.-W. Modern and late Holocene retrogressive thaw slump activity on the Yukon coastal plain and Herschel Island, Yukon Territory, Canada. Permafrost and Periglacial Processes, 2012, ¹ 23 (1), pp. 39—61.

5. Segal R. A., Lantz T. C., Kokelj S. V. Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic. Environmental Research Letters, 2016, 11 (3), p. 034025.

6. Swanson D. K., Nolan M. Growth of retrogressive thaw slumps in the Noatak Valley, Alaska, 2010—2016, measured by airborne photogrammetry. Remote sensing, 2018, 10 (7), p. 983.

7. Khomutov A. V., Babkina E. A., Khayrullin R. R., Dvornikov Yu. A. Factors of thermodenudation activation and thermo-cirque activity in Central Yamal in 2010—2018. Problems of the Arctic and Antarctic, 2024, no. 70 (2), pp. 222—237. (In Russian).

8. Leibman M. O. Cryogenic slope processes and their geoecological consequences under the conditions of tabular ground ice distribution. Tyumen, 2005, 262 p. (In Russian).

9. Burn C. R. The thermal regime of a retrogressive thaw slump near Mayo, Yukon Territory. Canadian J. of Earth Sciences, 2000, vol. 37, no. 7, pp. 967—981.

10. Lewkowicz A. G. Headwall retreat of ground-ice slumps, Banks Island, Northwest Territories. Canadian J. of Earth Sciences, 1987, vol. 24, no. 6, pp. 1077—1085.

11. Lantuit H., Pollard W. H. Temporal stereophotogrammetric analysis of retrogressive thaw slumps on Herschel Island, Yukon Territory. Natural Hazards and Earth System Sciences, 2005, vol. 5, no. 3, pp. 413—423.

12. Maslov N. N. Soil mechanics in construction practice (landslides and their prevention): a textbook for students of road construction specialties. Moscow, Stroiizdat, 1977, 319 p. (In Russian).

13. Leibman M. O., Kizyakov A. I., Nesterova N. B., Tarasevich I. I. Classification of retrogressive thaw slumps for mapping and forecasting. Problems of the Arctic and Antarctic, 2023, no. 69 (4), pp. 486—500. (In Russian).

14. Vasilchuk Yu. K., Krylov G. V., Podborny N. E. Cryosphere of oil and gas condensate fields of the Yamal Peninsula. Cryosphere of the Kharasaveyskoye gas condensate field. Vol. 1. Tyumen, TyumenNIIgiprogaz LLC, 2006, 347 p. (In Russian).

15. Baranov A. V. Erosion processes in oil and gas production under the conditions of the Far North. Russian Chemical J., 2005, vol. 49, no. 4, pp. 120—124. (In Russian).

16. Babkina E. A., Leibman M. O., Dvornikov Yu. A., Fakashchuk N. Yu., Khayrullin R. R., Khomutov A. V. Activation of cryogenic processes in Central Yamal as a consequence of regional and local climate and ground temperature changes. Meteorology and Hydrology, 2019, no. 4, pp. 99—109. (In Russian).

17. Nitze I., Heidler K., Barth S., Grosse G. Developing and testing a deep learning approach for mapping retrogressive thaw slumps. Remote Sensing, 2021, 13 (21), p. 4294.

18. Hu B., Wu Y., Zhang X., Yang B., Chen J., Li H., Chen X., Chen Z. Monitoring the thaw slump-derived thermokarst in the Qinghai-Tibet plateau using satellite SAR interferometry. J. of Sensors, 2019.

19. Leibman M., Kizyakov A., Zhdanova Y., Sonyushkin A., Zimin M. Coastal retreat due to thermodenudation on the Yugorsky Peninsula, Russia during the last decade, update since 2001—2010. Remote Sensing, 2021, 13 (20), p. 4042.

20. Nesterova N. B., Khomutov A. V., Leibman M. O., Safonov T. A., Belova N. G. Inventory of thermocirques in the North of Western Siberia based on a mosaic of satellite images from 2016—2018. Earth’s Cryosphere, 2021, no.  25 (6), pp. 41—50. (In Russian).

21. Leibman M., Nesterova N., Altukhov M. Distribution and morphometry of thermocirques in the north of West Siberia. Geosciences, 2023, 13 (6), p. 167.

22. Nitze I., Grosse G., Jones B. M., Romanovsky V. E., Boike J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nature communications, 2018, 9 (1), p. 5423.

23. Yang Y., Rogers B. M., Fisk G., Watts J., Potter S., Windholz T., Mullen A., Nitze I., Natali S. M. Mapping retrogressive thaw slumps using deep neural networks. Remote Sensing of Environment, 2023, 288, p. 113495.

24. Runge A., Nitze I., Grosse G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sensing of Environment, 2022, 268, p. 112752.

25. Tarasevich I. I., Leibman M. O., Kizyakov A. I., Nesterova N. B., Khomutov A. V. Distribution and dynamics of thermocirques in a key area of Central Yamal based on remote sensing data. Problems of the Arctic and Antarctic, 2024, no. 70 (3), pp. 391—411. (In Russian).

26. Trofimov V. T., Badu Y. B., Kudryashov V. G., Firsov N. G. Yamal Peninsula. Engineering and geological review. Moscow, Moscow State University Publishing, 1975, 278 p. (In Russian).

27. Vasiliev A. A., Malkova G. V., Oblogov G. E., Khomutov A. V. Permafrost degradation trends in the Western Arctic. Relief and Quaternary formations of the Arctic, Subarctic and Northwest Russia, 2024, iss. 11, pp. 483—490. (In Russian).

28. Bogoyavlensky V. I., Bogoyavlensky I. V., Nikonov R. A. Development monitoring of the C22 gas blowout Doublet object on Yamal peninsula using remote sensing data. Arctic: Ecology and Economy, 2024, vol. 14, no. 3, pp. 320—333. (In Russian).

29. Menshikov S. N., Melnikov I. V., Osokin A. B., Smolov G. K., Belenov A. V., Abrosimov A. V., Sizov O. S. Monitoring of hazardous exogenous processes at deposits on the Yamal Peninsula using satellite imagery results. Gas Industry, 2016, no. 7-8, pp. 126—132. (In Russian).

30. Rodenhizer H., Yang Y., Fiske G., Potter S., Windholz T., Mullen A., Watts J. D., Rogers B. M. A Comparison of Satellite Imagery Sources for Automated Detection of Retrogressive Thaw Slumps. Remote Sensing, 2024, no. 16 (13), p. 2361.

31. Li W., Hsu C.-Y., Wang S., Yang Y., Lee H., Liljedahl A., Witharana C., Yang Y., Rogers B. M., Arundel S. T. Segment Anything Model Can Not Segment Anything: Assessing AI Foundation Model’s Generalizability in Permafrost Mapping. Remote Sensing, 2024, no. 16 (5), p. 797.

32. Huang L., Lantz T. C., Fraser R. H., Tiampo K. F., Willis M. J., Schaefer  K. Accuracy, Efficiency, and Transferability of a Deep Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic. Remote Sensing, 2022, no. 14 (12), p. 2747.

33. Declassified Data. United States Geological Survey. Available at: https://earthexplorer.usgs.gov/.

34. Landsat Collections. Earth Engine Data Catalog. Available at: https://developers.google.com/earth-engine/datasets/catalog/landsat.

35. Sentinel-2. Earth Engine Data Catalog. Available at: https://developers.google.com/earth-engine/datasets/catalog/sentinel-2.

36. MOD11A2.061 Terra Land Surface Temperature and Emissivity 8-Day Global 1km. Earth Engine Data Catalog. Available at: https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2.

37. ArcticDEM. Polar Geospatial Center. Available at: https://www.pgc.umn.edu/data/arcticdem/.

38. Specialized Datasets for Climate Research. RRIHI — World Data Center. Available at: http://aisori-m.meteo.ru/waisori/. (In Russian).

39. Fetterer F., Knowles K., Meier W. N., Savoie M., Windnagel A. K. Sea Ice Index. (G02135, Version 3). National Snow and Ice Data Center. Boulder, Colorado USA, 2017.

40. Zhenxiang F., Ninglian W., Yuwei W., Yujie Z. Greenland-Ice-Sheet Surface Temperature and Melt Extent from 2000 to 2020 and Implications for Mass Balance. Remote Sensing, 2023, no. 15 (4), p. 1149.

41. Rostov I. D., Dmitrieva E. V., Rudykh N. I., Vorontsov A. A. Climatic changes in the thermal conditions of the Kara Sea over the past 40 years. Problems of the Arctic and Antarctic, 2019, no. 65 (2), pp. 125—147. (In Russian).

42. ODM 218.2.030-2013. Methodological recommendations for assessing landslide hazard on highways. Moscow, Rosavtodor, 2013. (In Russian).

43. Recommendations for Quantitative Assessment of Landslide Slope Stability. Moscow, Stroyizdat, 1984. 79 p. (In Russian).

44. Fomenko I. K. Methodology for assessing and forecasting landslide hazard. Moscow, 2014, 315 p. (In Russian).

45. Verdonen M., Berner L. T., Forbes B. C., Kumpula T. Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environmental Research Letters, 2020, vol. 15, iss. 10, pp. 1—17.

46. Streletskaya I. D., Leibman M. O. Cryogeochemical relationship between massive ice, cryopegs, and their host deposits in Central Yamal. Earth’s Cryosphere, 2002, vol. 6, no. 3, pp. 15—24. (In Russian).

47. Khomutov A. V., Leibman M. O., Andreeva M. V. Methodology for mapping massive ground ice in Central Yamal. Bulletin of Tyumen State University, 2012, no. 7, pp. 76—84. (In Russian).

48. Kritsuk L. N., Dubrovkin V. A., Yastreba N. V. Results of a comprehensive study on the dynamics of the coastal zone of the Kara Sea near the Marre-Sale meteorological station using GIS technologies. Earth’s Cryosphere, 2014, no. 18 (4), pp. 59—69. (In Russian).

49. Shpolyanskaya N. A., Streletskaya I. D. Genetic types of massive ground ice and their distribution features in the Russian Subarctic. Earth’s Cryosphere, 2004, vol. 8, no. 4, pp. 56—71. (In Russian).

50. Solomatin V. I., Belova N. G. Evidence of buried glacial origin of massive ground ice. X International Conference on Permafrost. Salekhard, IUT, 2012, pp. 493—497. (In Russian).

51. Kaplyanskaya F. A., Tarnogradsky V. D. On the problems of relic glacier ice deposits formation and the preservation of initially frozen moraines. Proceedings of RGO, 1977, vol. 109, iss. 4, pp. 314—319. (In Russian).

52. Tarnogradsky V. D. On the origin of massive underground ice deposits on the Kara coast of the Yamal Peninsula. Massive Ice in the Cryolithozone. Yakutsk, 1982, pp. 80—89. (In Russian).

53. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Beaufort Sea, Alaska North Slope shelf. Arctic: Ecology and Economy, 2023, vol. 13, no. 2, pp. 201—210. (In Russian).

54. Bogoyavlensky V. I., Nikonov R. A., Bogoyavlensky I. V. New data on intensive Earth degassing in the Arctic in the north of Western Siberia: thermokarst lakes with gas blowout craters and mud volcanoes. Arctic: Ecology and Economy, 2023, vol. 13, no. 3, pp. 375—390. (In Russian).


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594