| ||||
| ||||
Home » Archive of journals » Volume 15, No. 1, 2025 » Calculation of meteorological fields intended for forecasting radionuclides in the Arctic atmosphere CALCULATION OF METEOROLOGICAL FIELDS INTENDED FOR FORECASTING RADIONUCLIDES IN THE ARCTIC ATMOSPHEREJOURNAL: Volume 15, No. 1, 2025, p. 17-26HEADING: Research activities in the Arctic AUTHORS: Pripachkin, D.A., Rubinshtein, K.K., Ignatov, R.Y., Gubenko, I.M., Butakov, N.Y. ORGANIZATIONS: Nuclear Safety Institute of the Russian Academy of Sciences DOI: 10.25283/2223-4594-2025-1-17-26 UDC: 551.509.58 The article was received on: 24.11.2024 Keywords: WRF-ARW, forecast of meteorological fields Bibliographic description: Pripachkin, D.A., Rubinshtein, K.K., Ignatov, R.Y., Gubenko, I.M., Butakov, N.Y. Calculation of meteorological fields intended for forecasting radionuclides in the Arctic atmosphere. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 1, pp. 17-26. DOI: 10.25283/2223-4594-2025-1-17-26. (In Russian). Abstract: The aim of the article is to create a system for providing the model of radionuclide transport in the polar region with optimal prognostic meteorological fields. The authors analyze the results of calculations of surface meteorological fields in the Arctic region of Russia, in the area including Sabetta Bay, using the standard and polar versions of the WRF-ARW model [17]. An improvement in the quality of meteorological surface fields, primarily wind speed and direction, is shown due to the use of the polar version and the assimilation of a more realistic ice cover and ocean surface temperature. The research methods will be used in simulating radionuclide transfer in the Arctic. Finance info: This work was supported by the Russian Science Foundation grant (project no. 20-19-00615P). References: 1. Arutyunyan R. V., Bolshov L. A., Pripachkin D. A. et al. Assessment of the release of radionuclides during the accident at the Fukushima-1 nuclear power plant (Japan) 15 March 2011. Atomic Energy, 2012, vol. 112, no. 3, pp. 159—163. (In Russian). 2. Kanevsky M., Savelyeva E., Demyanov V., Chernov S., Sorokovikova O., Belikov V. Physical modeling of atmospheric transport of Chernobyl fallout: Preprint no. IBRAE-2002-08, p. 23. 3. Rubinstein K. G., Zarochentsev G. A., Ignatov R. Yu. et al. A regional model of atmospheric dynamics for the system of numerical modeling of the Arctic climate. Hydrometeorological research and forecasts, 2019, no. 3 (373), pp. 60—72. (In Russian). 4. Rubinstein K. G., Safronov A. N., Pripachkin D. A. et al. Comparison of the results of 85Kr atmospheric transport models with data from the ACURATE field experiment. Meteorology and hydrology, 2017, no. 3, pp. 41—57. (In Russian). 5. Guidance document ÐÄ 52.27.284-91. Methodological guidelines. Conducting production (operational) tests of new and improved methods of hydrometeorological and heliophysical forecasts. The Committee of Hydrometeorology. (In Russian). 6. Sarkisov A. A., Vysotsky V. L., Pripachkin D. A. Restoration of radioactive environmental pollution in Primorsky Krai due to a nuclear accident on a nuclear submarine in Chazhma Bay. Atomic Energy, 2019, vol. 127, iss. 3, pp. 144—150. (In Russian). 7. Bromwich D. H., Wilson A. B., Bai L., Moore G. W. K., Bauer P. A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Q. J. R. Meteorol. Soc., 2016, 142, pp. 644—658. DOI: 10.1002/qj.2527.Bromwich. 8. Bromwich D. H., Otieno F. O., Hines K. M., Manning K. W., Shilo E. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. D. Atmospheres, 2013, 118 (2), pp. 274—292. 9. Chen F., Dudhia J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev., 2001, 129, pp. 569—585. 10. GFS: Model Analyses and Guidance. Available at: https://mag.ncep.noaa.gov/model-guidance-model-parameter.php?group=Model%20Guidance&model=GFS&area=NAMER&ps=area. 11. Hines K. M., Bromwich D. H., Bai L.-S., Barlage M., Slater A. G. Development and testing of Polar WRF: Part III. Arctic Land. J. Clim., 2011, 24, pp. 26—48. 12. Hines K. M., Bromwich D. H. Development and testing of Polar WRF. Part I: Greenland ice sheet meteorology. Mon. Weather Rev., 2008, 136, pp. 1971—1989. 13. Hines K. M., Bromwich D. H., Bai L., Bitz C. M., Powers J. G., Manning K. W. Sea ice enhancements to Polar WRF. Mon. Weather Rev., 2015, 143, pp. 2363—2385. 14. Iacono M. J., Delamere J. S., Mlawer E. J., Shephard M. W., Clough S. A., Collins W. D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 2008, vol. 113. DOI: 10.1029/2008JD009944. 15. Kain J. S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 2004, 43, pp. 170—181. 16. Nakanishi M., Niino H. An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Bound. Layer Meteor., 2006, 119, pp. 397—407. 17. Description of the Advanced Research WRF Version 3. NCAR Technical Note. NCAR. [S. l.], 2008, 520 p. 18. Tao W., Simpson J., McCumber M. An Ice-Water Saturation Adjustment. Mon. Wea. Rev., 1989, 117, pp. 231—235. Available at: https://doi.org/10.1175/1520-0493(1989)1172.0.CO;2. 19. Bai W. L. et al. The Arctic System Reanalysis Version 2. Bull. Amer. Meteor. Soc., 2018. DOI: 10.1175/BAMS-D-16-0215.1. In press. 20. WRF Users Guide documentation. Available at: https://www2.mmm.ucar.edu/wrf/users/wrf_users_guide/build/html/physics.html#surface-physics. Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|