Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 14, No. 4, 2024 » Organochlorine compounds in Atlantic cod (Gadus morhua) and plaice (Pleuronectes platessa) of the Barents Sea

ORGANOCHLORINE COMPOUNDS IN ATLANTIC COD (GADUS MORHUA) AND PLAICE (PLEURONECTES PLATESSA) OF THE BARENTS SEA

JOURNAL: Volume 14, No. 4, 2024, p. 562-574

HEADING: Study and development of nature resources of the Arctic

AUTHORS: Gorbacheva, E.A., Novikov, M.A.

ORGANIZATIONS: Polar branch of the Russian Federal Research Institute of Fisheries and Oceanography

DOI: 10.25283/2223-4594-2024-4-562-574

UDC: 597.5-1.05:632.95(268.45)

The article was received on: 30.05.2024

Keywords: Barents sea, pollution, ichtiofauna, polychlorinated biphenyls, cod, organochlorine pesticides, European plaice

Bibliographic description: Gorbacheva, E.A., Novikov, M.A. Organochlorine compounds in Atlantic cod (Gadus morhua) and plaice (Pleuronectes platessa) of the Barents Sea. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 4, pp. 562-574. DOI: 10.25283/2223-4594-2024-4-562-574. (In Russian).


Abstract:

This paper studies the content of organochlorine pesticides and PCBs in muscle and liver of Atlantic cod and plaice, caught in the Barents Sea in 2016-2022. Chromatograph mass spectrometry is used to detect the content of organochlorine compounds in fish. The concentrations of HCB, α-HCH, β-HCH, γ-HCH, cis-chlordane, trans-chlordane, and trans-nonachlor in fish tissues are quantified, along with DDT and its metabolites, as well as PCB congeners with numbers 28, 31, 52, 99, 101, 105, 118, 138, 153, 156 and 180. The average content of ∑HCHs, HCB, ∑DDTs and ∑PCBs in cod muscle is 0.7, 0.06, 0.81 and 1.0 ng/g, and their average content in plaice muscle is 2.3, 0.66, 2.3 and 3.5 ng/g of wet weight, respectively. In cod liver, the average content of ∑HCHs, HCB, ∑DDTs, ∑PCBs, ∑chlordanes is 3.3, 3.0, 36.8, 65.4 and 30.9 ng/g, and their average content in plaice liver is 4.6, 6.5, 19.1, 10.9 and 4.8 ng/g of wet weight, respectively. The studies show that in fish tissue α-HCH predominates in ∑HCHs, ppꞌ-DDE — in ∑DDTs and PCB-118, PCB-138 and PCB-153 — in ∑PCBs. The accumulation of organochlorine compounds in fish tissue is found to be species-specific in terms of content level and ratio of HCH isomers, DDT isomers and metabolites, PCB congeners and chlordanes. The content of ∑HCHs, ∑DDTs and ∑PCBs in fish muscle and liver do not exceed the safe standards established for fish products.


References:

1. Maistrenko V. N., Kliuev N. A. Ecological and analytical monitoring of persistent organic pollutants. Moscow, BINOM. Laboratoriya znanii, 2009, 323 p. (In Russian).

2. Batoev V. B., Tsydenova O. V., Nimatsyrenova G. G. et. al. Persistent Organic Pollutants in Lake Baikal Basin: Analytical review. Novosibirsk, 2004, 110 ð. (In Russian).

3. AMAP Assessment 2002: Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 2004, 309 p.

4. AMAP Assessment 2015: Temporal Trends in Persistent Organic Pollutants in the Arctic. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 2016, 71 p.

5. AMAP Assessment 2020: POPs and Chemicals of Emerging Arctic Concern: Influence of Climate Change. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 2021, 131 p.

6. Kania-Korwel I., Lehmler H.-J. Toxicokinetics of chiral polychlorinated biphenyls across different species — a review. Environ. Sci. Pollut. Res. Int., 2016, vol. 23 (3), pp. 2058—2080. DOI: 10.1007/s11356-015-4383-0.

7. Rovinsky L. D., Voronova M. I., Afanasyev A. V. et al. Background monitoring of ground ecosystems contamination by organochlorine compounds. Leningrad, Gidrometeoizdat, 1990, 270 p. (In Russian).

8. Oliva A. L., La Colla N. S., Arias A. H. et al. Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary. Environ. Sci. Pollut. Res., 2017, vol. 24 (23), pp. 18979—18990. DOI: 10.1007/s11356-017-9394-6.

9. Barber J. L., Sweetman A. J., van Wijk D. et al. Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Sci. Total Environ., 2005, vol. 349, pp. 1—44. DOI: 10.1016/j.scitotenv.2005.03.014.

10. Borgå K., Gabrielsen G. W., Skaare J. U. Biomagnification of organochlorines along a Barents Sea food chain. Environ. Pollut., 2001, vol. 113, pp. 187—198. DOI: 10.1016/s0269-7491(00)00171-8.

11. Arias A. H., Oliva A. L., Ronda A. C. et al. PCBs Transfer in Marine Trophic Webs: From Fish to Top Predators. Advances in Environmental Research, vol. 50. J. A. Daniels (ed.). N.Y., Nova Science Publishers Inc., 2016, pp. 55—88.

12. Boitsov V. D., Lebed N. I., Ponomarenko V. P. et al. The Barents Sea cod (biological and fisheries outline). Murmansk, PINRO Press, 1996, 285 p. (In Russian).

13. Aleksandrov D. I., Amelkin A. V., Amelkina A. S. et al. State of raw biological resources of the Barents, White and Kara seas and the North Atlantic in 2021. Murmansk, PINRO named after N. M. Knipovich, 2021, 146 p. (In Russian).

14. Ichtiofauna and conditions of its existence in the Barents Sea. G. G. Matishov (ed.). Apatity, Publish. House of the Kola Scientific Center of the USSR Academy of Sciences, 1986, 213 p. (In Russian).

15. Stange K., Klungsøyr J. Organochlorine contaminants in fish and polycyclic aromatic hydrocarbons in sediments from the Barents Sea. ICES J. Mar. Sci., 1997, vol. 54, pp. 318—332.

16. Konstantinova L. L., Dvinin Yu. F., Lebskaya T. K., Kuzmina V. I. Technochemical properties of commercial fish of the North Atlantic and adjacent seas of the Arctic Ocean. Murmansk, PINRO Press, 1997, 183 p. (In Russian).

17. Ballesteros M. L., Gonzalez M., Wunderlin D. A. et al. Uptake, tissue distribution, and metabolism of the insecticide endosulfan in Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environ. Pollut., 2011, vol. 159 (6), pp. 1709—1714. DOI: 10.1016/j.envpol.2011.02.037.

18. Julshamn K., Duinker A., Berntssen M. et al. A baseline study on levels of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, non-ortho and mono-ortho PCBs, non-dioxin-like PCBs and polybrominated diphenyl ethers in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. Mar. Pollut. Bull., 2013, vol. 75 (1), pp. 250—258. DOI: 10.1016/j.marpolbul.2013.07.017.

19. Hoekstra P. F., O’Hara T. M., Fisk A. T. et al. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort–Chukchi Seas. Environ. Pollut., 2003, vol. 124, pp. 509—522.

20. Boitsov S., Grøsvik B. E., Nesje G., Malde K., Klungsøyr J. Levels and temporal trends of persistent organic pollutants (POPs) in Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) from the southern Barents Sea. Environ. Res., 2019, vol. 172, pp. 89—97.

21. Boitsov S., Frantzen S., Bruvold A., Grøsvik B. E. Varying temporal trends in the levels of six groups of legacy persistent organic pollutants (POPs) in liver of three gadoid species from the North Sea. Chemosphere, 2024, vol. 349, p. 140939. DOI: 10.1016/j.chemosphere.2023.140939.

22. Karl H., Kammann U., Aust M.-O. åt al. Large scale distribution of dioxins, PCBs, heavy metals, PAH-metabolites and radionuclides in cod (Gadus morhua) from the North Atlantic and its marginal seas. Chemosphere, 2016, vol. 149, pp. 294—303. DOI: 10.21443/1560-9278-2016-3-617-62410.1016/j.chemosphere.2016.01.052.

23. Dubova O. L., Bakholdina L. P., Shenderyuk V. V. Chlorinated organic compounds in aquatic biological resources of the Baltic region. Vestnik MGTU. [Vestnik of MSTU], 2016, vol. 19, no. 3, pp. 617—624. DOI: 10.21443/1560-9278-2016-3-617-624. (In Russian).

24. Lukyanova O. N., Tsygankov V. Yu., Boyarova M. D. Organochlorine pesticides and polychlorinated biphenyls in the Bering flounder (Hippoglossoides robustus) from the Sea of Okhotsk. Mar. Pollut. Bull., 2018, vol. 137, pp. 152—156. DOI: 10.1016/j.marpolbul.2018.10.017.

25. Iwata H., Tanabe S., Sakal N., Tatsukawa R. Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ. Sci. Technol., 1993, vol. 27, pp. 1080—1098.

26. Ozigin V. K., Ivshin V. A., Trofimov A. G. et al. The Barents Sea Water: structure, circulation, variability. Murmansk, PINRO, 2016, 260 p. (In Russian).

27. Bondy G. S., Newsome W. H., Armstrong C. L. et al. Trans-Nonachlor and cis-nonachlor toxicity in Sprague-Dawley rats: comparison with technical chlordane. Toxicol. Sci., 2000, vol. 58 (2), pp. 386—398.

28. Xuereb N., Olafsdottir K., Samarra F. et al. POPs in long-finned pilot whales mass stranded in Iceland as a proxy for their physiological condition. Mar. Pollut. Bull., 2023, vol. 197, 115758. DOI: 10.1016/j.marpolbul.2023.115758.

29. Hinck J. E., Norstrom R. J., Orazio C. E. et al. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility. Environ. Pollut., 2009, vol. 157 (2), pp. 582—591. DOI: 10.1016/j.envpol.2008.08.021.

30. Ricking M., Schwarzbauer J. DDT isomers and metabolites in the environment: an overview. Environ. Chem. Lett., 2012, vol. 10, pp. 317—323. DOI: 10.1007/s10311-012-0358-2.

31. Agapkina G. I., Brodskiy E. S., Shelepchikov A. A., Artukhova Ì. V. Transformation and Form of Dichlorodiphenyltrichloroethane (DDT) Applied to Moscow Soils. Moscow Univ. Soil Sci. Bull., 2017, vol. 72, no. 3, pp. 125—131. DOI: 10.3103/S0147687417030024.

32. Ho Q. T., Frantzen S., Nilsen B. M. et al. Congener-specific accumulation of persistent organic pollutants in marine fish from the Northeast Atlantic Ocean. J. of Hazardous Materials, 2023, vol. 457. 131758. Available at: https://doi.org/10.1016/j.jhazmat.2023.131758.

33. Tang B., Luo X.-J., Zeng Y.-H. et al. Tracing the biotransformation of polychlorinated biphenyls (PCBs) in common carp (Cryprinus carpio): Enantiomeric fraction and compound-specific stable carbon isotope analyses. Chemosphere, 2016, vol. 159, pp. 449—456. DOI: 10.1016/j.chemosphere.2016.06.053.

34. Winston G. W., Di Giulio R. T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology, 1991, vol. 19 (2), pp. 137—161. DOI: 10.1016/0166-445X(91)90033-6.

35. Koenig S., Fernandez P., Company J. B. et al. Are deep-sea organisms dwelling within a submarine canyon more at risk from anthropogenic contamination than those from the adjacent open slope? A case study of Blanes canyon (NW Mediterrranean). Progress in Oceanography, 2013, vol. 118, pp. 249—259. DOI: 10.1016/j.pocean.2013.07.016.

36. Dudarev A. A., Dushkina E. V., Sladkova Y. N. et al. Persistent organic pollutants (pops) in local food in the Pechenga district of the Murmansk region. Toksikologicheskii vestnik. [Toxicological Review] 2015, no. 4, pp. 18—25. (In Russian).

37. Tsygankov V. Yu., Lukyanova O. N. Current levels of organochlorine pesticides in marine ecosystems of Russian Far Eastern Seas. Contemporary Problems of Ecology, 2019, vol. 12, pp. 562—574. DOI: 10.1134/S199542551906009X.


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594