| ||||
| ||||
Home » Archive of journals » Volume 14, No. 1, 2024 » Assessment of changes in the heavy-metal phytoextraction by Tagetes erecta from contaminated soils of Norilsk using humic additives ASSESSMENT OF CHANGES IN THE HEAVY-METAL PHYTOEXTRACTION BY TAGETES ERECTA FROM CONTAMINATED SOILS OF NORILSK USING HUMIC ADDITIVESJOURNAL: Volume 14, No. 1, 2024, p. 90-102HEADING: Ecology AUTHORS: Chukaeva, M.A., Pukhalsky, Y.V., Loskutov, S.I., Sidorova, V.R., Voropaeva, E.V., Matveeva, V.A. ORGANIZATIONS: Saint Petersburg Mining University, Pushkin Leningrad State University DOI: 10.25283/2223-4594-2024-1-90-102 UDC: 502/504: 631.416.9; 631.871 The article was received on: 06.10.2023 Keywords: heavy metals, Norilsk, urban soils, phytoremediation, Tagetes erecta, humic acids Bibliographic description: Chukaeva, M.A., Pukhalsky, Y.V., Loskutov, S.I., Sidorova, V.R., Voropaeva, E.V., Matveeva, V.A. Assessment of changes in the heavy-metal phytoextraction by Tagetes erecta from contaminated soils of Norilsk using humic additives. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 1, pp. 90-102. DOI: 10.25283/2223-4594-2024-1-90-102. (In Russian). Abstract: The article evaluates the changes in the phytoremediation potential of Tagetes Erecta when using stress-protective additives in the form of humic acids on the example of heavy metal extraction from heavy contaminated soils in Norilsk. The researchers reveal that the application of 0.025% humic acids influences the growth of biomass and reduces the total accumulation of heavy metals in it. They also find out a negative correlation between these indicators, more pronounced on roots than on shoots. To use plants in phytoremediation it is necessary to increase the humic acid dose until the combined effect is achieved. The results of the study can be used to clean up soils contaminated with heavy metals in industrial areas of the Arctic zone. Finance info: The research was carried out within the framework of the state assignment: “Fundamental interdisciplinary research of the Earth interior and processes of integrated development of georesources. Code FSRRW-2023-0002”. References: 1. Ponomareva T. V., Trefilova O. V., Bogorodskaya A. V., Shapchenkova O. A. Ecological and functional assessment of the state of soils in the zone of aerotechnogenic influence of the Norilsk industrial complex. Siberian Ecological J., 2014, vol. 21, no. 6. pp. 987—996. (In Russian). 2. Ponomarenko M. R., Kutepov Y. I. Mining complexity assessment to substantiate deformation monitoring at open pit mines. J. of Mining Science, 2021, vol. 57 (6), pp. 986—994. 3. Kolesnikov S. I., Kazeev K. Sh., Valkov V. F., Ponomareva S. V. Ranking of chemical elements according to their environmental hazard for the soil. Reports of the Russian Academy of Agricultural Sciences, 2010, vol. 1, pp. 27—29. (In Russian). 4. Shahzad B., Tanveer M., Rehman A., Cheema S. A., Fahad S., Rehman S., Sharma A. Nickel Whether Toxic or Essential for Plants and Environment — A Review. Plant Physiol. Biochem., 2018, vol. 132, ðð. 641—651. 5. Sarapulova G. I. Geochemical approach in assessing the technogenic impact on soils. J. of Mining Inst., 2020, vol. 243, ðð. 388—395. 6. Yurkevich Nik. V., Eltsov I. N., Gureev V. N., Mazov N. A., Yurkevich Nat. V., Edelev A. V. Technogenic impact on the environment in the Russian Arctic using the example of the Norilsk industrial region. News of Tomsk Polytechnic University. Ser. “Georesources Engineering”, 2021, vol. 332, no. 12, ðð. 230—249. (In Russian). 7. Belova M., Iakovleva E., Popov A. Mining and environmental monitoring at open-pit mineral deposits. J. of Ecological Engineering, 2019, vol. 20 (5), ðð. 172—178. 8. Evdokimova M. V., Glazunov G. P., Yakovlev A. S., Plekhanova I. O., Aimaletdinov R. A., Shestakova M. V. Assessment of the ecological state of lands contaminated with a complex of heavy metals in the vicinity of the city of Norilsk for the period from 2004 to 2019 based on NDVI MODIS materials from the vega-science server. Modern problems of remote sensing of the Earth from space, 2021, vol. 18, no. 4, ðð. 149—165. (In Russian). 9. Kutepova N. A., Moseykin V. V., Kondakova V. N., Pospehov G. B., Straupnik I. A. Specificity of properties of coal processing waste regarding their storage. Mining Informational and Analytical Bull., 2022, vol. 12. ðð. 77—93. 10. Varaksin G. S., Kuznetsova G. V. Features of biological reclamation in the Norilsk industrial region. Siberian Forest J., 2016, no. 2, pp. 92—101. (In Russian). 11. Zhulidov A. V., Robarts R. D., Pavlov D. F., Kämäri J., Gurtovaya T. Y., Meriläinen J. J., Pospelov I. N. Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex. Environmental Monitoring and Assessment, 2011, vol. 181 (1—4), ðð. 539—553. 12. Telyatnikov M. Yu., Pristyazhnyuk S. A. Anthropogenic influence of enterprises of the Norilsk industrial region on the vegetation cover of the tundra and forest-tundra. Siberian Ecological J., 2014, no. 6, pp. 903—922. (In Russian). 13. Piirainen V. Y., Mikhaylov A. V., Barinkova A. A. The concept of modern ecosystem for the ural aluminum smelter. Tsvetnye Metally, 2022, vol. 7, ðð. 39—45. 14. Bogorodskaya A. V., Ponomareva T. V., Shapchenkova O. A., Shishikin A. S. Assessment of the state of microbial complexes of soils in the forest-tundra zone under conditions of aerotechnogenic pollution. Soil Science, 2012, no. 5, pp. 582—593. (In Russian). 15. Vedrova E. F., Mukhortova L. V. Biogeochemical evaluation of forest ecosystems in the area affected by Norilsk industrial complex. Contemporary Problems of Ecology, 2014, vol. 7, no. 6, ðð. 669—678. 16. Kachor O. L., Sarapulov G. I., Bogdanov A. V. Investigation of the possibility of immobilization of mobile forms of arsenic in technogenic soils. J. of Mining Institute, 2019, vol. 239, pp. 596—602. 17. Smirnov Y. D., Suchkov D. V., Danilov A. S., Goryunova T. V. Artificial soils for restoration of disturbed land productivity. Eurasian Mining, 2021, vol. 36 (2), ðð. 92—96. 18. Strizhenok A. V., Korelskiy D. S., Choi Y. Assessment of the efficiency of using organic waste from the brewing industry for bioremediation of oil-contaminated soils. J. of Ecological Engineering, 2021, vol. 22 (4), ðð. 66—77. 19. Yakovlev A. S., Plekhanova I. O., Kudryashov S. V., Aimaletdinov R. A. Assessment and regulation of the ecological state of soils in the area of activity of the enterprises of the metallurgical company “Norilsk Nickel”. Pochvovedenie, 2008, no. 6, ðð. 737—750. (In Russian). 20. Potravnaya E. V. Interaction between Business and Indigenous Peoples of the North: What does the Population Expect after the Norilsk Accident? ÅÑÎ, 2021, no. 7, pp. 19—39. (In Russian). 21. Tsukerman V. A., Ivanov S. V. Environmental policy of resource corporations during the industrial development of mineral deposits in the Arctic zone of the Russian Federation. Mining Information and Analytical Bull., 2020, no. 10, pp. 56—66. (In Russian). 22. Apulu O., Potravny I., Sukhorukova I. Methods of Justification and Selection of Technologies for Remediation of Oil-contaminated Land. Ecology and Industry of Russia, 2021, vol. 25, no. 6, pp. 38—43. (In Russian). 23. Samsonova I. V., Potravny I. M., Pavlova Ì. Â., Semyonova L. A. Assessment of losses caused to the indigenous peoples of the North in the Taimyr Dolgano-Nenets District of the Krasnoyarsk Territory due to the diesel spill at TPP-3 in Norilsk. Arctic: Ecology and Economy, 2021, vol. 11, no. 2, pp. 254—265. (In Russian). 24. Pashkevich M. A., Korotaeva A. E., Matveeva V. A. Experimental simulation of a system of swamp biogeocenoses to improve the efficiency of quarry water treatment. J. of Mining Inst., 2023, pp. 1—10. 25. Vasilyeva M., Kovshov S., Zambrano J., Zhemchuzhnikov M. Effect of magnetic fields and fertilizers on grass and onion growth on technogenic soils. J. of Water and Land Development, 2021, vol. 49, ðð. 55—62. 26. Nakbanpote W., Meesungnoen O., Prasad M. N. V. Potential of Ornamental Plants for Phytoremediation of Heavy Metals and Income Generation. Bioremediation and Bioeconomy, 2016, ðð. 179—217. 27. Liu J., Xin X., Zhou Q. Phytoremediation of contaminated soils using ornamental plants. Environmental Reviews, 2018, vol. 26 (1), pp. 43—54. 28. Khan A. H. A., Kiyani A., Mirza C. R., Butt T. A., Barros R., Ali B., Iqbal M., Yousaf S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ Res., 2021, vol. 195, ðð. 117—130. 29. Rocha C. S., Rocha D. C., Kochi L. Y. Phytoremediation by ornamental plants: a beautiful and ecological alternative. Environ Sci Pollut Res, 2022, vol. 29, ðð. 3336—3354. 30. Bosiacki M. Phytoextraction of cadmium and lead by selected cultivars of Tagetes electa L. Pt. II. Content of Cd and Pb in plants. Acta Sci. Pol. Hortoru, 2009, vol. 8, ðð. 15—26. 31. Liu Y. T., Chen Z. S., Hong C. Y. Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula. J. of Hazardous Materials, 2011, vol. 189 (3), ðð. 724—731. 32. Singh S. K., Biswojit B. Bioavailability of Heavy Metals (Cd, Cr, Ni, Pb) to French Marigold (Tagetes patula) in relation to Soil properties. Trends Tech Sci Res, 2018, vol. 1 (5), ðð. 555—572. 33. Miao Q., Yan J. Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. J. of Material Cycles and Waste Management, 2013, vol. 15, ðð. 98—105. 34. Milusheva D. I., Iakimova E. T., Atanassova B. Y. Growth performance of marigold (Tagetes patula L.) at conditions of soil contamination with Cd, Al and Zn. J. of Mountain Agriculture on the Balkans, 2016, vol. 19 (1), ðð. 227—245. 35. Kumar P., Pandey A. K., Vijai K., Pathak S. Siddique Anaytullah. Phytoextraction of Lead, Chromium, Cadmium, and Nickel by Tagetes Plant Grown at Hazardous Waste site. Annals of Biology, 2018, vol. 34 (3), ðð. 287—289. 36. Ahmad I., Saquibi R. U., Qasim M., Saleem M., Khan A. S., Yaseen M. Humic acid and cultivar effects on growth, yield, vase life, and corm characteristics of Gladiolus. Chılean J. of Agrıcultural Research, 2013, vol. 73 (4), ðð. 339—344. 37. Minisha T. M., Shah I. K., Varghese G. K., Kaushal R. K. Application of Aztec Marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environmental Chemistry and Ecotoxicology, 2020, vol. 3, ðð. 1—21. 38. Janos P., Vavrova J., Herzogova L., Pilarova V. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma, 2010, vol. 159, ðð. 335—341. 39. Cacco G., Dell Agnolla G. Plantgrowth regulator activity of soluble humic substances. Can. J. Soil Sci., 1984, vol. 64, ðð. 25—28. 40. Yang T., Hodson M. E. Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil. Sci. Total Environ., 2019, vol. 647, ðð. 290—300. 41. Kerndorff H., Schnitzer M. Sorptionof metals on humic acid. Geochimica et Cosmo-chimica Acta, 1980, vol. 44, ðð. 1701—1708. 42. Dmitrieva E. D., Syundyukova K. V., Leontyeva M. M., Glebov N. N. Influence of environmental pH on the binding of heavy metal ions by humic substances and hymatomelanic acids of peats. Scientific notes of Kazan University. Ser. “Natural Sciences”, 2017, vol. 159, no. 4, ðð. 575—588. (In Russian). 43. Sevastyanov D. V., Isachenko T. E., Guk E. N. Norilsk region: from natural specifics to development practice. Bull. of St. Petersburg Univ. Ser. 7 “Geology. Geography”, 2014, no. 3, ðð. 82—94. (In Russian). 44. Kopsell D., Belisle C., Lowery H., Whitlock C., Sams C. E. Genotype and lighting environment impact petal tissue pigmentation in Tagetes tenuifolia. Acta Horticulturae, 2016, vol. 113, ðð. 103—110. 45. Swift R. Organic matter characterization. D. L. Sparks et al. (eds). Methods of soil analysis. Pt. 3. Chemical methods. Soil Science Society of America, 1996, ðð. 1018—1020. 46. Kacar B., Inal A. Plant analysis, Nobel Yayin no. 1241. Fen Bilimleri, 2008, vol. 6. 47. Weinberg S., Harel D., Abramowitz S. Statistics Using R: An Integrative Approach. Cambridge, Cambridge Univ. Press, 2020, ð. 692. 48. Vinogradov A. P. Geochemistry of rare and trace chemical elements in soils. Moscow, Publish. House of the USSR Academy of Sciences, 1957, 200 p. (In Russian). 49. Dobrovolsky V. V. Fundamentals of biogeochemistry. Moscow, ACADEMIA, 2003, 397 p. (In Russian). 50. Ilyin V. B. Heavy metals in the soil-plant system. Novosibirsk, Nauka, 1991, 150 p. (In Russian). 51. Krylova E. G., Garin E. V. The effect of the combined action of nickel and copper ions on the initial stages of ontogenesis of Alisma plantago-aquatica. Regulatory Mechanisms in Biosystems, 2020, vol. 11 (3), ðð. 367—371. 52. Theriault G., Nkongolo K. Nickel and Copper Toxicity and Plant Response Mechanisms in White Birch (Betula papyrifera). Bull. of Environmental Contamination and Toxicology, 2016, vol. 97 (2), ðð. 171—176. 53. Peralta-Videa J. R., Gardea-Torresdey J. L., Gomez E., Tiemann K. J., Parsons J. G., Carrillo G. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 2002, vol. 119 (3), pp. 291—301. 54. Shalaby T. A., El-Newiry N. A., El-Tarawy M., El-Mahrouk M. E., Shala A. Y., El-Beltagi H. S., Rezk A. A., Ramadan K. M. A., Shehata W. F., El-Ramady H. Biochemical and Physiological Response of Marigold (Tagetes erecta L.) to Foliar Application of Salicylic Acid and Potassium Humate in Different Soil Growth Media. Gesunde Pflanzen, 2022, ðð. 1—14. 55. Slukovskaya M. V., Kremenetskaya I. P., Ivanova L. A., Vasilieva T. N. Remediation in conditions of anoperating copper-nickel plant: results of perennial experiment. Non-ferrous Metals, 2017, vol. 2, ðð. 20—26. Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|