Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 14, No. 1, 2024 » Assessment of the zone of intense gas condensate evaporation during blowouts in shallow wells

ASSESSMENT OF THE ZONE OF INTENSE GAS CONDENSATE EVAPORATION DURING BLOWOUTS IN SHALLOW WELLS

JOURNAL: Volume 14, No. 1, 2024, p. 12-23

HEADING: Research activities in the Arctic

AUTHORS: Solbakov, V.V., Zatsepa, S.N., Ivchenko, A.A.

ORGANIZATIONS: N. N. Zubov’s State Oceanographic Institute, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2024-1-12-23

UDC: 502.3

The article was received on: 13.11.2023

Keywords: mathematical modeling, oil spill response plans, emergency blowout of gas condensate wells, evaporation of gas condensate, Lagrangian elements, computational fluid dynamics, SPILLMOD

Bibliographic description: Solbakov, V.V., Zatsepa, S.N., Ivchenko, A.A. Assessment of the zone of intense gas condensate evaporation during blowouts in shallow wells. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 1, pp. 12-23. DOI: 10.25283/2223-4594-2024-1-12-23. (In Russian).


Abstract:

The paper reviews the approach of assessing mechanisms and factors determining the formation of a gas condensate spill from a shallow underwater emergency discharge at a gas condensate field. The researcher determine spatial and temporal formation scales of an intense evaporation zone for the characteristic flow rates of underwater wells, necessary for assessing the area of increased gas contamination in which it is impossible to carry out emergency recovery measures. They establish that the radial flow in the area where the gas-liquid plume exits the sea surface determines the size of the intense evaporation area; at low values of wind speed and currents, it depends on the well flow rate, gas factor and fractional composition of the oil product. The researchers have carried out calculations using the SPILLMOD model and the evolution model of a characteristic Lagrangian element in the spilling region.


References:

1. Nordvik A. B. The technology windows-of-opportunity for marine oil spill response as related to oil weathering and operations. Spill Science & Technology Bull., 1995, vol. 2, no. 1, pp. 17—46.

2. Fanneløp T. K., Bettelini M. Very Large Deep-Set Bubble Plumes From Broken Gas Pipelines. Petroleumstilsynet, 2007, 70 p.

3. Olsen J. E., Skjetne P. Current understanding of subsea gas release: A review. The Canadian j. of chemical engineering, 2016, vol. 94, no. 2, pp. 209—219.

4. Johansen Ø., Rye H., Cooper C. DeepSpill–field study of a simulated oil and gas blowout in deep water. Spill Science & Technology Bull., 2003, vol. 8, no. 5-6, pp. 433—443.

5. Fanneløp T. K., Sjøen K. Hydrodynamics of underwater blowouts. Norwegian Maritime Res., 1980, 8 (4), pp. 17—33.

6. PCCI Marine and Environmental Engineering, “Oil Spill Containment, Remote Sensing and Tracking for Deepwater Blowouts: Status of Existing and Emerging Technologies,” MMS Purchase Order Number 1435-01-98-PO-15135, August 12, 1999.

7. Milgram J. H. Mean flow in round bubble plumes. J. Fluid Mech., 1983, 133, pp. 345—376.

8. Koterov V. N., Arkhipov B. V., Solbakov V. V., Yurezanskaya Yu. S. Application of mathematical methods for the analysis and assessment of environmentally significant events in a large—scale accident of an underwater gas pipeline. Russian Academy of Sciences, A. A. Dorodnitsyn Scientific Center. Moscow, Calculate Center of the RAS, 2007, 74 p. (In Russian).

9. Ross S. L., Ross C. W., Lepine F., Langtry R. K. Ixtoc-I oil blowout. Researcher/Pierce Ixtoc-I Cruise. Washington, DC, NOAA, 1980, pp. 25—40.

10. Bloomberg: gas leaks on the Nord Streams could be a climate disaster. — Available at: https://www.ntv.ru/novosti/2725752/. (In Russian).

11. Topham D. R. Hydrodynamics of an oil well blowout, Beaufort Sea. Institute of Ocean Science Tech. Rep., 1975, vol. 33.

12. Mansurov M. N. Management of the marine environment in the development of oil and gas resources: Abstract. diss. ... Dr. Technical sciences. Vladivostok, 1992, 34 p. (In Russian).

13. Parfenova N. M., Grigoriev E. B., Kosyakova L. S., Shafiev I. M. Hydrocarbon raw materials of the Yuzhno-Kirinskoye field: gas, condensate, oil. Topical issues of research of reservoir systems of hydrocarbon deposits: Scientific and technical collection: Vesti gazovoi nauki, 2016, no. 4 (28), pp. 133—145. (In Russian).

14. Khavkin A. Ya. Physics of oil and gas formations and nonlinear phenomena: A textbook. Moscow, Gubkin Russian State University of Oil and Gas (NRU), 2019, 288 p. (In Russian).

15. Zatsepa S. N., Ivchenko A. A., Zhuravel V. I., Solbakov V. V. Investigation of the sensitivity of a pseudocomponent model of oil evaporation on the sea surface to parameter variations. Processes in geomedia, 2020, iss. 2, pp. 662—674. (In Russian).

16. Zatsepa S. N., Ivchenko A. A., Solbakov V. V., Stanovoy V. V. Forecasting the spread of oil and petroleum products in the event of an emergency spill in marine areas (scientific and methodological manual). Moscow, JSC Finpol, 2018, 140 p. (In Russian).

17. Zatsepa S. N., Ivchenko A. A., Solbakov V. V. SPILLMOD — à CFD-model for information support of marine oil spill response. J. of oceanological research, 2022, vol. 50, no. 2, pp. 72—105.

18. Zatsepa S. N., Ivchenko A. A., Solbakov V. V., Stanovoy V. V. Method of modeling the consequences of long-term accidents at oil production facilities in the Arctic region. Problems of the Arctic and Antarctic, 2018, vol. 64, no. 4, pp. 428—443. (In Russian).


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594