Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Home Ľ Archive of journals Ľ Volume 13, No. 4, 2023 Ľ January air palaeotemperature during MIS-3-2 in North-Eastern Yakutia, reconstructed from a high-resolution record of the isotopic composition of syngenetic ice wedges of the Batagay Yedoma


JOURNAL: Volume 13, No. 4, 2023, p. 516-528

HEADING: Research activities in the Arctic

AUTHORS: Vasilíchuk, Y.K., Vasilíchuk, A.C., Budantseva, N.A., Vasilíchuk, J.Y.

ORGANIZATIONS: Lomonosov Moscow State University

DOI: 10.25283/2223-4594-2023-4-516-528

UDC: 551.345:544.02

The article was received on: 08.06.2023

Keywords: yedoma, ice wedges, Yakutia, radiocarbon age, mean January paleotemperature, Late Pleistocene

Bibliographic description: Vasilíchuk, Y.K., Vasilíchuk, A.C., Budantseva, N.A., Vasilíchuk, J.Y. January air palaeotemperature during MIS-3-2 in North-Eastern Yakutia, reconstructed from a high-resolution record of the isotopic composition of syngenetic ice wedges of the Batagay Yedoma. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2023, vol. 13, no. 4, pp. 516-528. DOI: 10.25283/2223-4594-2023-4-516-528. (In Russian).


The work is aimed at determining the age of ice wedges, as well as at characterizing winter temperature fluctuations during the formation of the Yedoma based on the isotopic composition of ice wedges in the unique outcrop of the Batagay mega-slump. The researchers carried out a detailed sampling from the Upper Ice Wedge Complex of the Batagay Yedoma, determined the isotopic composition in three ice wedges at different altitudes. The results of radiocarbon dating of organic matter from ice wedge confirm the time of syngenetic formation of the upper-tier ice wedges in the range from 27.2 to 30.8 thousand cal. years. Ice wedges of the lower tier, according to the results of radiocarbon dating of ice accumulated 44.7—47.9 thousand years ago simultaneously at different levels: 274—268 m and 224—227 respectively. The study of yedoma deposits and ice-wedge ice made it possible to obtain data on climatic fluctuations in a region with the most severe continental climate. Direct radiocarbon dating of syngenetic ice wedges provided dating of ice growth in the Batagay yedoma, data on the content of stable isotopes in the ice demonstrated stable and very harsh conditions of the winter season. The air paleotemperature in Batagay in January 47—42 and 30—25 thousand cal. years ago was consistently low about –51°C.

Finance info: The research was supported by Russian Scientific Foundation (Grant No.†23-17-00082). The authors are grateful to A.†Trishin and A.†Ginzburg ó our field assistants, also to Dr.†E.†Zazovskaya and Dr. H.†Zaitseva for their help in radiocarbon analyses.


1. Zherebker A., Podgorski D. C., Kholodov V. et al. The molecular composition of humic substances isolated from yedoma permafrost and alas cores in the eastern Siberian Arctic as measured by ultrahigh resolution mass spectrometr. J. of Geophysical Research: Biogeosciences, 2019, vol. 124, pp. 2432—2445. Available at: https://doi.org/10.1029/ 2018JG004743.

2. Reference and information portal “Weather and climate”. Available at: http://www.pogodaiklimat.ru/history/24263.htm. (In Russian).

3. Aliev R. G., Medvedkov A. A. Analysis of the climatogenic dynamics of the Batagay thermodenudation “crater” using remote sensing data. Materialy Mezhdunarodnoi konferentsii “InterCarto. InterGIS”. [Materials of the International Conference “InterCarto. InterGIS”], 2020, vol. 26, pt. 2, pp. 366—375. DOI: 10.35595/2414-9179-2020-2-26-366-375. (In Russian).

4. Shepelev A. G., Cherepanova A. M. Permafrost landscapes of the Verkhoyansk Region in the case study of the Batagay laydown and the Kisilakh ridge (Northern Yakutia). Sovremennye problemy territorial’nogo razvitiya: elektronnyi zhurnal. [Modern problems of territorial development: Electron journal], 2019, no. 3. (In Russian).

5. Murton J. B., Edwards M. E., Lozhkin A. V. et al. Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. Quaternary Research, 2017, no. 87, pp. 314—330. DOI: 10.1017/qua.2016.15.

6. Vasil’chuk Yu. K., Vasil’chuk A. C. Validity of radiocarbon ages of Siberian yedoma. GeoRes J., 2017, no. 13, pp. 83—95. DOI: 10.1016/j.grj.2017.02.004.

7. Vasil’chuk Yu. K., Vasil’chuk J. Y., Budantseva N. A., Vasil’chuk A. C., Trishin A. Y. High-Resolution Oxygen Isotope and Deuterium Diagrams for Ice Wedges of the Batagay Yedoma, Northern Central Yakutia. Doklady Earth Sciences, 2019, vol. 487, no. 2, pp. 975—978. DOI: 10.1134/S1028334X19080312.

8. Vasil’chuk Yu. K., Vasil’chuk J. Y., Budantseva N. A., Vasil’chuk A. C. New AMS dates of organic microinclusions in ice wedges of the lower part of the Batagay Yedoma, Yakutia. Doklady Earth Sciences, 2020, vol. 490, pp. 100—103. Available at: https://doi.org/10.1134/S1028334X20020154.

9. Ashastina K., Schirrmeister L., Fuchs M., Kienast F. Palaeoclimate characteristics in interior Siberia of MIS 6−2: first insights from the Batagay permafrost mega−thaw slump in the Yana Highlands. Climate of the Past, 2017, no. 13, pp. 795—818. DOI: 10.5194/cp-13-795-2017.

10. Opel T., Murton J. B., Wetterich S. et al. Past climate and continentality inferred from ice wedges at Batagay megaslump in the Northern Hemisphere’s most continental region, Yana Highlands, interior Yakutia. Climate of the Past, 2019, no. 15, pp. 1443—1461. DOI: 10.5194/cp-15-1443-2019.

11. Vasil’chuk Yu. K. Reconstruction of the palaeoclimate of the Late Pleistocene and Holocene of the basis of isotope studies of subsurface ice and waters of the permafrost zone. Water Resources, 1991, vol. 17, no. 6, pp. 640—647.

12. Opel T., Meyer H., Wetterich S., Laepple T., Murton J. Ice wedges as archives of winter palaeoclimate: a review. Permafrost and Periglacial Processes, 2018, no. 29, pp. 199—209. Available at: https://doi.org/10.1002/ppp.1980.

13. Porter T. J., Opel T. Recent advances in paleoclimatological studies of Arctic wedge- and pore-ice-water isotope records. Permafrost and Periglacial Processes, 2020, no. 31, pp. 429—441. Available at: https://doi.org/10.1002/ppp.2052.

14. Campbell-Heaton K., Lacelle D., Fisher D. Ice wedges as winter temperature proxy: Principles, limitations and noise in the δ 18O records (an example from high Arctic Canada). Quaternary Science Reviews, 2021, vol. 269, p. 107135. Available at: https://doi.org/10.1016/j.quascirev.107135.

15. Bronk Ramsey C. OxCal version 4.4.4. Available at: https://c14.arch.ox.ac.uk.

16. Reimer P. J., Austin W. E. N., Bard E. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal ka BP). Radiocarbon, 2020, vol. 62, no. 4, pp. 725—757. DOI: 10.1017/RDC.2020.41.

17. Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, no. 16, pp. 436—468. DOI: 10.1111/j.2153-3490.1964.tb00181.x.

18. Vasil’chuk Yu. K. Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions). Theoretical Problems Department, Russian Academy of Sciences and Lomonosov Moscow University Publications. Moscow, 1992. Vol. 1. 420 p.; vol. 2. 264 p. (In Russian with English contents section).

19. Vasil’chuk Yu. K., Surkova G. V. Verification of the Relationship between the Isotopic Composition of Ice Wedges and Cold-season Temperature over the Recent 80 Years in the Northern Permafrost Zone of Russia. Russian Meteorology and Hydrology, 2020, no. 45, pp. 791—796. DOI: 10.3103/S1068373920110060.

20. Murton J. B., Opel T., Toms P. et al. A multimethod dating study of ancient permafrost, Batagay megaslump, east Siberia. Quaternary Research, 2021, vol. 105, pp. 1—22. DOI: 10.1017/qua.2021.27.

21. Jongejans L. L., Mangelsdorf K., Karger C. et al. Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial period. The Cryosphere, 2022, vol. 16, pp. 3601—3617. DOI: 10.5194/tc-16-3601-2022.

22. Schirrmeister L., Grosse G., Kunitsky V. et al. Periglacial landscape evolution and environmental changes of Arctic lowland areas for the last 60 000 years (western Laptev Sea coast, Cape Mamontov Klyk). Polar Research, 2008, no. 27, pp. 249—272. DOI: 10.1111/j.1751-8369.2008.00067.x.

23. Meyer H., Derevyagin A. Y., Siegert C., Hubberten H.‑W. Paleoclimate studies on Bykovsky Peninsula, North Siberia — hydrogen and oxygen isotopes in ground ice. Polarforschung, 2002, no. 70, pp. 37—51.

24. Schirrmeister L., Grosse G., Schwamborn G. et al. Late Quaternary history of the accumulation plain north of the Chekanovsky Ridge (Lena Delta, Russia): a multidisciplinary approach. Polar Geography, 2003, vol. 27, no. 4, pp. 277—319. DOI: 10.1080/789610225.

25. Vasil’chuk Yu. K., Vasil’chuk A. C. Isotope-Geochemical composition of the ice wedges in the slope yedoma on the Kular Ridge and reconstruction of the mean January air paleotemperature during 47,000-25,000 BP. Earth’s Cryosphere, 2020, vol. 3, no. XXIV, pp. 22—33. DOI: 10.21782/EC2541-9994-2020-3(22-33).

26. Opel T., Wetterich S., Meyer H. et al. Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait). Climate of the past, 2017, no. 13, pp. 587—611. Available at: https://doi.org/10.5194/cp-13-587-2017.

27. Wetterich S., Kuzmina S., Andreev A. et al. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia. Quaternary Science Reviews, 2008, vol. 27, no. 15, pp. 1523—1540. DOI: 10.1016/j.quascirev.2008.04.007.

28. Vasil’chuk Yu. K., Vasil’chuk J. Y., Budantseva N. A., Vasil’chuk A. C., Trishin A. Yu. Isotopic and geochemical features of the Batagaika yedoma (preliminary results). Arktika i Antarktika [Arctic and Antarctic], 2017, no. 3, pp. 69—98. DOI: 10.7256/2453-8922.2017.3.24433. (In Russian).

Download »

© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594