Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Home Archive of journals Volume 13, No. 2, 2023 Wildfires as asource of black carbon in the Arctic in August 2022


JOURNAL: Volume 13, No. 2, 2023, p. 257-270

HEADING: Ecology

AUTHORS: Popovicheva, O.B., Chichaeva, M.A., Kovach, R.G., Kasimov, N.S., Kobelev, V.O., Sinitskiy, .I.

ORGANIZATIONS: Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow Branch of the Russian Geographical Society , SAI Scientific Center for the Study of the Arctic

DOI: 10.25283/2223-4594-2023-2-257-270

UDC: 504.3.054(985)

The article was received on: 28.10.2022

Keywords: air pollution, black carbon, wildfires, air mass transfer

Bibliographic description: Popovicheva, O.B., Chichaeva, M.A., Kovach, R.G., Kasimov, N.S., Kobelev, V.O., Sinitskiy, .I. Wildfires as asource of black carbon in the Arctic in August 2022. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2023, vol. 13, no. 2, pp. 257-270. DOI: 10.25283/2223-4594-2023-2-257-270. (In Russian).


The assessment of aerosol pollution of the atmosphere in the high-latitude regions of the Arctic is among the most important environmental and climate problems. In the summer of 2022, due to abnormal temperatures and a lack of precipitation, the wildfire areas in the Western Siberia and European part of the Russian Federation reached record levels. At the polar aerosol station of the Moscow State University “Island Bely” (the Kara Sea), continuous aethalometric measurements of the short-lived climatic tracer namely black carbon are carried out. In August 2022, seven episodes of pollution were recorded, significantly exceeding the background typical for the Arctic summer. An analysis of the aerosol absorption capacity in a wide range of solar radiation revealed a significant effect of wildfire plumes on the aerosol composition of the Arctic atmosphere. The distribution of high concentrations of black carbon depending on the wind direction and speed pointed to the southern direction, Yamal Peninsula, as a source of high pollution. Regional distribution of black carbon sources calculated by the method of assigning air mass transfer trajectories to measured concentrations on Bely Island identifies the regions of the Western Siberia, the northern and central regions of the European part of Russia, the steppe regions of the East European Plain, and the Southern Urals. Wildfires from identified source regions impacted significantly the composition of the climatically active aerosol component of the atmosphere.

Finance info: The work was carried out according the Development Program of the Interdisciplinary Scientific and Educational School of the Lomonosov Moscow State University The Future of the Planet and Global Environmental Changes and supported by the Russian Science Foundation grant No. 22-17-00-102. The infrastructure methodology for the aerosol complex at the Island Bely polar station was developed within the project No. 075-15-2021-938 framework.


1. Popova V. Modern Climate Changes in the North of Eurasia as a Manifestation of Large-Scale Atmospheric Circulation Variations. Fundamental and applied climatology, 2018, vol. 1, pp. 84—111. (In Russian).

2. Mohov I. Specific features of the summer heat formation in the European territory of Russia in the context of general climate. Izvestiya. Atmospheric and Oceanic Physics, 2011, vol. 47, no. 6, pp. 653—660.

3. Lavoué D., Liousse C., Cachier H., Stocks B. J., Goldammer J. G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J. of Geophysical Research: Atmospheres, 2000, vol.  105, pp. 26871—26890.

4. Conard S. G., Ivanova  G. A. Wildfire in Russian boreal forests—Potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environmental Pollution, 1997, vol. 98, pp. 305—313. Available at: https://doi.org/10.1016/S0269-7491(97)00140-1.

5. Diapouli E., Popovicheva O., Kistler M., Vratolis S., Persiantseva N., Timofeev M., Kasper-Giebl A., Eleftheriadis K. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010. Atmospheric environment, 2014, vol. 96, pp. 393—404. Available at: http://dx.doi.org/10.1016/j.atmosenv.2014.03.026.

6. Popovicheva O., Molozhnikova E., Nasonov S., Potemkin V., Penner I., Klemasheva M., Marinaite I., Golobokov L., Vratolis S., Eleftheriadis K. Industrial and wildfire aerosol pollution over world heritage Lake Baikal. J. of environmental sciences, 2021, vol. 107, pp. 49—64. Available at: https://doi.org/10.1016/j.jes.2021.01.011.

7. Johnson M. S., Strawbridge K., Knowland K. E., Keller C., Travis M. Long-range transport of Siberian biomass burning emissions to North America during FIREX-AQ. Atmospheric Environment, 2021, vol. 252, p. 118241. DOI: 10.1016/j.atmosenv.2021.118241.

8. Agarwal S., Aggarwal S. G., Okuzawa K., Kawamura K. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmospheric Chemistry and Physics, 2010, vol. 10, pp. 5839—5858. DOI: 10.5194/acp-10-5839-2010.

9. Voronova O., Zima A., Kladov V., Cherepanova E. Anomalous fires in Siberia in the summer of 2019. J. f Remote Sensing, 2020, no. 1, pp. 70—82. (In Russian).

10. Kozlov V. S., Yausheva E. P., Terpugova S. A., Panchenko M. V., Chernov D. G., Shmargunov V. P. Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012. Intern. J. of Remote Sensing, 2014, vol. 35, pp. 5722—5741. DOI: 10.1080/01431161.2014.945010.

11. Reid J., Koppmann R., Eck T., Eleuterio D. A review of biomass burning emissions. Pt. 2. Intensive physical properties of biomass burning particles, 2005, vol. 5, pp. 799—825.

12. Popovicheva O. B., Kozlov V. S., Engling G., Diapouli E., Persiantseva N. M., Timofeev M., Fan T.-S., Saraga D., Eleftheriadis K. Small-scale study of Siberian biomass burning: I. Smoke microstructure. Aerosol Air Qual. Res., 2015, vol. 15, pp. 117—128.

13. Popovicheva O. B., Kozlov V. S., Rakhimov R. F., Shmargunov V. P., Kireeva E. D., Persiantseva N. M., Timofeev M. A., Engling G., Elephteriadis K., Diapouli L., Panchenko M. V., Zimmermann R., Schnelle-Kreis J. Optical-microphysical and physical-chemical characteristics of Siberian biomass burning: small-scale fires in an aerosol chamber. Atmospheric and Oceanic Optics, 2016, vol. 29, pp. 323—331. (In Russian).

14. Samsonov Yu., Popov S., Belenko O., Chankina O. Chemical composition and disperse characteristics of smoke aerosol emission from fires in the boreal forests of Siberia. Atmospheric and Oceanic Optics, 2008, vol. 21, pp. 523—531. (In Russian).

15. Kozlov V. S., Panchenko M. V., Shmargunov V. P., Chernov D. G., Yausheva  E. P., Pol’kin V. V., Terpugova S. A. Long-term investigations of the spatiotemporal variability of black carbon and aerosol concentrations in the troposphere of West Siberia and Russian Subarctic. Chemistry for Sustainable Development, 2016, vol. 24, pp. 423—440.

16. Quinn P., Stohl A., Arneth A., Berntsen T., Burkhart J., Christensen J., Flanner M., Kupiainen K., Lihavainen H., Shepherd M. et al. The impact of black carbon on Arctic climate. AMAP Technical Report, 2011, vol. 4.

17. Moschos V., Schmale J., Aas W., Becagli S., Calzolai G., Eleftheriadis K., Moffett C. E., Schnelle-Kreis Jü., Severi M., Sharma S., Skov H., Vestenius M., Zhang Wendy, Hakola H., Hellén H., Huang Lin, Jaffrezo J.-L., Massling A., Nøjgaard J. K., Petäjä T., Popovicheva O., Sheesley R. J., Traversi R., Yttri K. E., Prévôt A. S. H., Baltensperger U., Haddad I. El. Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface. Environmental Research Letters, 2022, vol. 17, p. 034032.

18. Wang Q., Jacob D. J., Fisher J. A., Mao J., Leibensperger E. M., Carouge C. C., Le Sager P., Kond Y., Jimenez J. L., Cubison M. J. et al. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmos. Chem. Phys., 2011, vol. 1, pp. 12453—12473. DOI:10.5194/acp-11-12453-2011.

19. Ren L., Yang Y., Wang H., Zhang R., Wang P., Liao H. Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980—2018. Atmospheric Chemistry and Physics, 2020, vol. 20, pp. 9067—9085.

20. Paris J.-D., Stohl A., Nédélec P., Arshinov M. Y., Panchenko M., Shmargunov V., Law K. S., Belan B., Ciais P. Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne measurements. Atmospheric Chemistry and Physics, 2009, vol. 9, pp. 9315—9327.

21. Warneke C., Froyd K., Brioude J., Bahreini R., Brock C., Cozic J., De Gouw J., Fahey D., Ferrare R., Holloway J. An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophysical Research Letters, 2010, vol. 37.

22. Schmal J., Sharma S., Decesari S., Pernov J., Massling A., Hansson H.-C., Von Salzen K., Skov H., Andrews E., Quinn P. K. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chemistry and Physics, 2022, vol. 22, pp. 3067—3096.

23. Manousakas M., Popovicheva O., Evangeliou N., Diapouli E., Sitnikov N., Shonija N., Eleftheriadis K. Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova. Tellus B: Chemical and Physical Meteorology, 2020, vol. 72, pp. 1—14.

24. Sakerin S. M., Golobokova L. P., Kabanov D. M., Kalashnikov D. A., Kozlov V. S., Kruglinski I. A., Makarov V. I., Makshtas A. P., Popova S. A., Radionov V. F. The results of measurements of the physicochemical characteristics of atmospheric aerosol at the research station “Ice base” Cape Baranov. Atmospheric Ocean Optics, 2019, vol. 32, pp. 421. (In Russian).

25. Yue S., Zhu J., Chen S., Xie Q., Li W., Li L., Ren H., Su S., Li P., Ma H. Brown carbon from biomass burning imposes strong circum-Arctic warming. One Earth, 2022, vol. 5, pp. 293—304.

26. Romanenkov V., Rukhovich D., Koroleva P., McCarty J. L. Estimating black carbon emissions from agricultural burning. Novel measurement and assessment tools for monitoring and Management of Land and Water Resources in agricultural landscapes of Central Asia. [S. l.], Springer, 2014, pp. 347—364.

27. Vinogradova A. A., Smirnov N. S., Korotkov N. Anomalous fires of 2010 and 2012 in Russia and the supply of black carbon to the Arctic. Atmospheric Ocean Optics, 2016, vol. 29, pp. 482—487.

28. Popovicheva O. B. Evangeliou N., Kobelev V. O., Chichaeva M. A., Eleftheriadis K., Gregorič A., Kasimov N. S. Siberian Arctic black carbon: gas flaring and wildfire impact. Atmospheric Chemistry and Physics, 2022, vol. 22, pp. 5983—6000.

29. Popovicheva O., Diapouli E., Makshtas A., Shonija N., Manousakas M., Saraga D., Uttal T., Eleftheriadis K. East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi. Science of the Total Environment, 2019, vol. 655, pp. 924—938.

30. Drinovec L., Močnik G., Zotter P., Prévôt A., Ruckstuhl C., Coz E., Rupakheti M., Sciare J., Müller T., Wiedensohler A. The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 2015, vol. 8, pp. 1965—1979.

31. Zhang Y., Schnelle-Kreis J., Abbaszade G., Zimmermann R., Zotter P., Shen R. R., Schaefer K., Shao L., Prévôt A.S., Szidat S. Source apportionment of elemental carbon in Beijing, China: Insights from radiocarbon and organic marker measurements. Environ. Sci. Technol., 2015, vol. 49, pp. 8408—8415.

32. Allen G. A., Miller P. J., Rector L. J., Brauer M., Su J. G. Characterization of valley winter woodsmoke concentrations in Northern NY using highly time-resolved measurements. Aerosol and Air Quality Resarch, 2011, vol. 11, pp. 519—530.

33. Wang Y., Hopke P. K., Rattigan O. V., Xia X., Chalupa D. C., Utell M. J. Characterization of residential wood combustion particles using the two-wavelength aethalometer. Environmental science & technology, 2011, vol. 45, pp. 7387—7393.

34. Eleftheriadis K., Nyeki S., Psomiadou C., Colbeck I. Background aerosol properties in the European arctic. Water, Air and Soil Pollution: Focus, 2004, vol. 4, pp. 23—30.

35. Uria-Tellaetxe I., Carslaw D. C. Conditional bivariate probability function for source identification. Environmental modelling & software, 2014, vol. 59, pp. 1—9.

36. Popovicheva O., Chichaeva M., Kobelev V., Sinitskiy A., Hansen A. Black Carbon in urban emissions on the Polar Circle. Proceedings of the 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics. 2020, pp. 1211—1217.

37. Shukurov K., Postylyakov O., Borovski A., Shukurova L., Gruzdev A., Elokhov A., Savinykh V., Mokhov I., Semenov V., Chkhetiani O. Study of transport of atmospheric admixtures and temperature anomalies using trajectory methods at the AM Obukhov Institute of Atmospheric Physics. Proceedings of the IOP Conference Series: Earth and Environmental Science. [S. l.], 2019, p. 012048.

38. Stein A., Draxler R., Rolph G., Stunder B., Cohen M., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. B. Am. Meteorol. Soc., 2015, vol. 96, pp. 2059—2077.

Download »

© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594