Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 12, No. 3, 2022 » Monitoring of the methane concentration changes in the Arctic atmosphere in 2019—2021 according to the TROPOMI spectrometer data

MONITORING OF THE METHANE CONCENTRATION CHANGES IN THE ARCTIC ATMOSPHERE IN 2019—2021 ACCORDING TO THE TROPOMI SPECTROMETER DATA

JOURNAL: Volume 12, No. 3, 2022, p. 304-319

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Sizov, O.S., Nikonov, R.A., Bogoyavlensky, I.V.

ORGANIZATIONS: Oil and Gas Research Institute of RAS

DOI: 10.25283/2223-4594-2020-3-304-319

UDC: 502.171, 504.7

The article was received on: 10.06.2022

Keywords: remote sensing of the Earth, craters of gas blowout, methane, greenhouse gases, gas emission, Yamal peninsula, thermokarst lakes, atmospheric methane concentration (AMC), TROPOMI spectrometer

Bibliographic description: Bogoyavlensky, V.I., Sizov, O.S., Nikonov, R.A., Bogoyavlensky, I.V. Monitoring of the methane concentration changes in the Arctic atmosphere in 2019—2021 according to the TROPOMI spectrometer data. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2022, vol. 12, no. 3, pp. 304-319. DOI: 10.25283/2223-4594-2020-3-304-319. (In Russian).


Abstract:

For the first time, the authors carried out a comprehensive analysis of changes in the atmospheric methane concentrations (AMC) over the land of the Circum-Arctic megaregion and the Yamal Peninsula according to the TROPOMI spectrometer in 2019—2021. They established that the average AMC in the mega-region was approximately 40—50 ppb below the global one for all three years, and also below the average for the Yamal Peninsula by 2—12 ppb. The authors revealed the regional features in the AMC changes, mainly depending on the air temperature near the earth’s surface, which affects the processes of methane emission. Despite a decrease in the AMC in most of Yamal, in relatively cold 2021, an anomalous increase in the AMC was detected in its central part, apparently associated with geological factors, including the migration of deep gas in the area of Lake Neito along faults in the gas-bearing structures of the Neytinskoye field. With the active expansion of hydrocarbon resources” development on the Yamal Peninsula, the share of the anthropogenic contribution in AMC changes seems to be negligible.


Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic “Rational nature management and efficient development of oil and gas resources in the Arctic and subarctic zones of the Earth in a changing climate” (No. 122022800264-9).

References:

1. State of the Global Climate 2021. World Meteorological Organization, WMO-No.1290, 2022, 57 p.

2. Jackson R. B., Saunois M., Bousquet P. et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 2020, vol. 15, no. 7, p. 071002.

3. Report on climate features in the Russian Federation for 2021. Moscow, Rosgidromet, 2022, 110 p. (In Russian).

4.Anisimov O. A., Kokorev V. A. Comparative Analysis of the Land, Marine and Satellite Observations of Methane in the Lover Atmosphere in the Russian Arctic under the Conditions of the Changing Climate. Issledovanie Zemli iz kosmosa, 2015, no. 2, p. 1—14. (In Russian).

5.Anisimov O. A., Zimov S. A., Volodin E. M., Lavrov S. A. Methane Emission in the Russian Permafrost Zone and Evaluation of Its Impact on Global Climate. Russian Meteorology Hydrology, 2020, no. 45, pp. 377—385.

6. Dlugokencky E. Global CH4 Monthly Means. NOAA/GML, 2022. Available at: gml.noaa.gov/ccgg/trends_ch4//.

7.Bogoyavlensky V. I., Bogoyavlensky I. V. Arctic and World Ocean: global and Russian trends of oil and gas industry development. Scientific works of the Free Economic Society of Russia, 2019, vol. 218, pp. 152—179. (In Russian).

8. Oh Y., Zhuang Q., Welp L. R., Liu1 L., Lan X. et al. Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase. Communications Earth & Environment, 2022, 3, 159.

9. Loulergue L., Schilt A., Spahni R. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 2008, 453, pp. 383—386.

10.Bogoyavlensky V. I., Sizov O. S., Nikonov R. A., Bogoyavlensky I. V., Kargina T. A. Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2020, no. 3 (39). pp. 6—22. (In Russian).

11.Uspensky A. B. Satellite — based measurements of the Greenhouse Gases concentration in atmosphere. Fundamental and applied climatology, vol. 8, no. 1, pp. 122—144. (In Russian).

12. James R. H., Bousquet P., Bussmann I. et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnol. Oceanogr., 2016, 61, pp. 283—299.

13.Bogoyavlensky V. I. Arctic and the World Ocean: current state, perspectives and challenges of hydrocarbon production. Monograph. Scientific works of the Free Economic Society of Russia, 2014, vol. 182, no. 3, pp. 12—175. (In Russian).

14.Bogoyavlensky V. I. The threat of catastrophic gas blowouts form the Arctic cryolithozone. Yamal craters. Oil and Drilling, 2014, no. 9, pp. 13—18. (In Russian).

15.Bogoyavlensky V. I. The threat of catastrophic gas blowouts form the Arctic cryolithozone. Yamal and Taymyr craters. Pt. 2. Oil and Drilling, 2014, no. 10, pp. 4—8. (In Russian).

16.Bogoyavlensky V. I. Gas-hydrodynamics in the Arctic craters of gas blowout. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2018, no. 1 (29), pp. 48—55. (In Russian).

17.Bogoyavlensky V. I., Bogoyavlensky I. V., Sizov O. S., Nikonov R. A. Technologies for remote detection and monitoring of the Earth degassing in the Arctic: Yamal peninsula, Neito lake. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2018, no. 2 (30), pp. 83—93. (In Russian).

18.Bogoyavlensky V. I., Bogoyavlensky I. V. Natural and technogenic threats in prospecting, exploration and development of hydrocarbon fields in the Arctic. Mineral Resourses of Russia. Economics and Management, 2018, no. 2, pp. 60—70. (In Russian).

19.Bogoyavlensky V. I., Sizov O. S., Mazharov A. V., Bogoyavlensky I. V. et al. Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2019, no. 1 (33), pp. 88—105. (In Russian).

20. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A., Sizov O. S. Earth degassing in the Artic: remote and field studies of the thermokarst lakes gas eruption. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2019, no. 2 (34). pp. 31—47. (In Russian).

21.Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V. et al. Earth Degassing in the Arctic: Comprehensive Studies of the Distribution of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal Peninsula. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2019, no. 4 (36). — pp. 52—68. (In Russian).

22.Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Gor. prom-st’, 2020, no. 1 (149), pp. 97—118. (In Russian).

23.Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 1, pp. 51—66. (In Russian).

24.Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N. Catastrophic gas blowout in 2020 on the Yamal Peninsula in the Arctic. Results of comprehensive analysis of aerospace RS data. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 3. pp. 363—374. (In Russian).

25. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Yakushev V., Sevastyanov V. Permanent gas emission from the Seyakha Crater of gas blowout, Yamal Peninsula, Russian Arctic. Energies, 2021, 14, p. 5345.

26. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. Seyakha catastrophic gas blowout and explosion from the cryosphere of the Arctic Yamal Peninsula. Cold Regions Science and Technology, 2022, vol. 196, p. 103507.

27. Bogoyavlensky V., Bogoyavlensky I., Nikonov R. et al. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences, 2021, no. 71.

28.Sizov O. S. Remote analysis of the surface gas shows consequences in the north of Western Siberia. Geomatika, 2015, no. 1. pp. 53—68. (In Russian).

29. Badu Yu. B. Cryogenic stratum of gas-bearing structures of Yamal. On the influence of gas deposits on the formation and development of a cryogenic stratum. Moscow, Nauch. mir, 2018, 232 p. (In Russian).

30. Kizyakov A., Zimin M., Sonyushkin A. et al. Comparison of Gas Emission Crater Geomorphodynamics on Yamal and Gydan Peninsulas (Russia), Based on Repeat Very-High-Resolution Stereopairs. Remote Sens, 2017, no. 9, p. 1023.

31. Hovland M., Judd A. G. The global production of methane from shallow submarine sources. Cont. Shelf Res., 1992, no. 12, pp. 1231—1238.

32. Judd A., Hovland M. Seabed Fluid Flow. The Impact on Geology, Biology, and the Marine Environment. Cambridge, 2007, 475 ð.

33. Andreassen K., Hubbard A., Winsborrow M. et al. Massive blowout craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science, 2017, 356, 6341, 948—953.

34.Bogoyavlensky V. I., Erokhin G. N., Nikonov R. A., Bogoyavlensky I. V., Bryksin V. M. Study of catastrophic gas blowout zones in the Arctic based on passive microseismic monitoring (on the example of Lake Otkrytiye). Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2020, no. 1 (37), pp. 93—104. (In Russian).

35.Bogoyavlensky V. I.; Kazanin A. G.; Kishankov A. V.; Kazanin G. A. Earth degassing in the Arctic: comprehensive analysis of powerful gas emission in the Laptev Sea. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 2, pp. 178—194. (In Russian).

36.Bogoyavlensky V. I., Kishakov A. V., Kazanin A. G. Permafrost, Gas Hydrates, and Gas Seeps in the Central Part of the Laptev Sea. Doklady Earth Sciences, 2021, vol. 500, pt. 1. pp. 766—771.

37.Bondur V. G., Kuznetsova T. V. Detection of gas seeps in the Arctic offshore areas, using remote sensing data. Issledovanie Zemli iz kosmosa, 2015, no. 4, pp. 30—43. (In Russian).

38.Kruglikov N. M., Kuzin I. L. Emissions of deep gas on the Urengoy field. Structural geomorphology and neotectonics of Western Siberia in connection with oil and gas potential. Tyumen, 1973, pp. 96—106. (Tr. ZapSibNIGNI, iss. 37). (In Russian).

39. Walter K. M., Zimov S., Chanton J. P. et al. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 2006, no. 443, pp. 71—75.

40. Walter K. M., Smith L. C., Chapin III F. S. Methane bubbling from northern lakes: present and future contributions to the global methane budget Phil. Trans. R. Soc. A, 2007, no. 365, pp. 1657—1676.

41. Shakhova N., Semiletov I., Salyuk A. et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 2010, no. 327, pp. 1246—1250.

42.Sergienko V. I., Lobkovskii L. I., Semiletov I. P. et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the “Methane Catastrophe”: some results of integrated studies in 2011. Doklady Earth Sciences, SP MAIK Nauka/Interperiodica, 2012, no. 446 (1), pp. 1132—1137.

43. Froitzheim N., Majka J., Zastrozhnov D. Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave. PNAS 2021, vol. 118, no. 41.

44. Sentinel-5P OFFL CH4: Offline Methane. 08.02.2019. Available at: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CH4.

45. Ingmann P., Veihelmann B., Langen J. et al. Requirements for the GMES Atmosphere Service and ESA’s implementation concept: Sentinels-4/-5 and-5p. Remote Sensing of Environment, 2012, no. 120, pp. 58—69.

46. Lorente A., Borsdorff T., Butz A., Hasekamp O. et al. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech., 2021, no. 14, pp. 665—684.

47. Hasekamp O., Lorente A., Hu H. et al. Algorithm Theoretical Baseline Document for Sentinel-5 Precursor Methane Retrieval. SRON-S5P-LEV2-RP-001, 2021, 63 p.

48. Jacob D. J., Turner A. J., Maasakkers J. D. et al. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 2016, no. 16 (22), pp. 14371—14396.

49. GISTEMP Team, 2022: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 20YY-MM-DD at data.giss.nasa.gov/gistemp/.

50. Lenssen N., Schmidt G., Hansen J. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 2019, vol. 124, no. 12, pp. 6307—6326.

51. Thompson T. Arctic sea ice hits 2021 minimum. Nature, 2021, 29 Sept.

52. Report on climate features in the Russian Federation for 2020. Moscow, Rosgidromet, 2021, 104 p. (In Russian).

53. State of the Global Climate 2020. Provisional report. World Meteorological Organization, 2021, 38 p.

54. Weather in 243 countries of the world. Available at: https://rp5.ru/.

55. Arctic Sea Ice Extent. NSIDC, 2022. Available at: https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/.


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594