| ||||
| ||||
Home » Archive of journals » Volume 12, No. 2, 2022 » Acceptable risk for Arctic shelf ecosystems based on probabilistic model calculations ACCEPTABLE RISK FOR ARCTIC SHELF ECOSYSTEMS BASED ON PROBABILISTIC MODEL CALCULATIONSJOURNAL: Volume 12, No. 2, 2022, p. 172-182HEADING: Research activities in the Arctic AUTHORS: Solovieva, N.V., Lobkovsky, L.I. ORGANIZATIONS: P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences DOI: 10.25283/2223-4594-2022-2-172-182 UDC: 551.46.072:51 The article was received on: 11.10.2021 Keywords: probabilistic assessments of environmental risk, acceptable risk, shelf ecosystems Bibliographic description: Solovieva, N.V., Lobkovsky, L.I. Acceptable risk for Arctic shelf ecosystems based on probabilistic model calculations. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2022, vol. 12, no. 2, pp. 172-182. DOI: 10.25283/2223-4594-2022-2-172-182. (In Russian). Abstract: The article presents environmental risk assessments for Arctic shelf ecosystems based on a probabilistic model. Calculations were carried out using observations of seasonal variations of phytoplankton biomass in the Arctic seas. To calculate the environmental risk according to the probabilistic model, the authors used data on the probabilities of impact on marine ecosystems from stressors, taking into account the risks from technological processes of offshore resource development. The results made it possible to calculate the probabilities of acceptable impacts on highly productive and low-productive ecosystems of the Arctic shelf. Comparison of risk modeling results showed that due to the low productivity of marine ecosystems, reliability requirements for technological processes that ensure the safety of Arctic resource development should not be reduced. Finance info: The work was carried out according to the State assignment, topic No. FMWE-2021-0004. References: 1. Lobkovsky L. I. Seismogenic trigger hypothesis of increased methane emissions and climate change in the Arctic. Zemlya i Vselennaya, 2020, nî. 6, pp. 27—36. (In Russian). 2. Elliott M. Marine science and management means tackling exogenic unmanaged pressures and endogenic managed pressures — A numbered guide. Marine Pollution Bull., 2011, vol. 62, nî. 4, ðð. 651—655. Available at: https://doi.org/10.1016/j.marpolbul.2010.11.033. 3. Patin S. A. Oil and ecology of the continental shelf: Offshore oil and gas complex: state, prospects, impact factors. Vol. 1. Moscow, Izd-vo VNIRO, 2017, 326 p. (In Russian). 4. Chen S. Q., Chen B., Fath B. D. Ecological risk assessment on the system scale: A review of state-of-the-art models future perspectives. Ecological Modelling, 2013, vol. 250, ðð. 25—33. 5. Solovjova N. V. Ecological risk simulation assessment in marine ecosystems of the Arctic shelf. Marine Pollution Bull., 2021, vol. 169, p. 112577. Available at: https://doi.org/10.1016/j.marpolbul.2021.112577. 6. Solovjova N. V., Lobkovsky L. I. A method for assessing environmental risk in the development of Arctic shelf resources. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2019, no. 1 (33), pp. 50—60. DOI: 10.25283/2223-4594-2019-1-50-60. (In Russian). 7. Solovjova N. V. Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability level. Ecological Modelling, 2019, vol. 40, ðð. 60—72. Available at: https://doi.org/10.1016/j.ecolmodel.2019.05.015. 8. Silkin V., Pautova L., Giordano M., Artemiev V. Interannual variability of Emiliania huxleyi blooms in the Barents Sea: In situ data 2014-2018. Marine Pollution Bull., 2020, vol. 158, p. 111392. Available at: https://doi.org/10.1016/j.marpolbul.2020.111392. 9. Flint M. V. Bioresources of the Arctic seas of Russia: changes under the influence of climate and anthropogenic factors, ecosystem bases of protection. Nauchno-tekhnicheskie problemy osvoeniya Arktiki. Ros. akad. nauk. Moscow, Nauka, 2015, pp. 55—71. (In Russian). 10. Flint M. V., Poyarkov S. G., Rymsky-Korsakov N. A. Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh). Oceanology, 2018, vol. 58, ðð. 315—318. Available at: https://doi.org/10.1134/S0001437018020042. 11. Matishov G. G., Dzhenyuk S. L., Moiseev D. V. Climate and large marine ecosystems of the Arctic. Herald of Russian Academy of Sciences, 2017, vol. 87, no. 1, ðð. 30—39. Available at: https://doi.org/10.1134/S1019331617010087. 12. Makarevich P. R., Oleinik A. A. Structure of the annual cycle of phytoplankton community evolution in the Ob-Yenisei shoal of the Kara Sea. Dokl. Earth Sc., 2009, vol. 426, ðð. 669—671. 13. Makarevich P. R., Larionov V. V. Annual cycle of development of planktonic phytocenosis of the Ob-Yenisei shallow water of the Kara Sea. Okeanologiya, 2011, vol. 37, no. 1, pp. 3—8. (In Russian). 14. Sukhanova I. N., Flint M. V., Pautova L. A. et al. Phytoplankton of the western Arctic in the spring and summer of 2002: Structure and seasonal changes. Deep-Sea Res. II, 2009, vol. 56, ðð. 1223—1236. 15. Suhanova I. N., Flint M. V., Druzhkova E. I. et. al. Phytoplankton of the north-western part of the Kara Sea. Okeanologiya, 2015, vol. 55, no. 4. pp. 605—619. (In Russian). 16. Demidov A. B., Mosharov S. A., Makkaveev P. N. Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer. J. Mar. Sys., 2014, vol. 132, ðð. 130—149. 17. Demidov A. B., Kopelevich O. V., Mosharov S. A. et al. Modelling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms. J. Sea Res, 2017, vol. 125, ðð. 1—17. 18. Mosharov S. A., Demidov A. B., Simakova U. V. Features of primary production processes in the Kara Sea at the end of the growing season. Okeanologiya, 2016, vol. 56, no. 1, pp. 90—100. (In Russian). 19. Il’jash L. V., Rat’kova T. N., Radchenko I. G., Zhitina L. S. Phytoplankton of the White Sea. System of the White Sea. Vol. 2. The water column and the atmosphere interacting with it, the cryosphere, river runoff and the biosphere. Moscow, Nauch. mir, 2012, pp. 605—639. (In Russian). 20. Dalpadado P., Ingvaldsen R. B., Stige L. C., Bogstad B., Knutsen T., Ottersen G., Ellertsen B. Climate effects on the Barents Sea ecosystem dynamics. ICES J. of Marine Science, 2012, vol. 69, ðð. 1303—1316. 21. Hunt Jr G. L., Blanchard A. L., Boveng P., Dalpadado P., Drinkwater K. F., Eisner L., Hopcroft R. R., Kovacs K. M., Norcross B. L., Renaud P., Reigstad M., Renner M., Skjoldal H. R., Whitehouse A., Woodgate R. A. The Barents and Chukchi Seas: Comparison of tow Arctic shelf ecosystems. J. of Marine Systems, 2013, vol. 109—110, ðð. 43—68. Available at: https://doi.org/10.1016/j.jmarsys.2012.08.003. 22. Zatsepin A. G., Zavialov P. O., Kremenetskiy V. V., Poyarkov S. G., Soloviev D. M. The upper desalinated layer in the Kara Sea. Oceanology, 2010, vol. 50, ðð. 657—667. Available at: https://doi.org/10.1134/S0001437010050036. 23. Zatsepin A. G., Poyarkov S. G., Kremenetskiy V. V. et al. Hydrophysical features of deep water troughs in the western Kara Sea. Oceanology, 2015, vol. 55, ðð. 472—484. Available at: https://doi.org/10.1134/S0001437015040165. 24. Walsh J., Dieterle D., Maslowski W., Grebmeier J., Whitledge T., Flint M., Sukhanova I., Bates N., Cota G., Stockwel D., Moran S., Hansell D., McRoy C. A numerical model of seasonal primary production within the Chukchi/Beaufort Seas. Deep-Sea Research, part 2, 2005, vol. 52 (24), ðð. 3541—3576. DOI: 10.1016/j.dsr2.2005.09.009. 25. Belyaev V. I. Modelling of marine systems. Kiev, Nauk. dumka, 1987, 203 p. (In Russian). 26. Belyaev V. I., Konduforova N. V. Mathematical modeling of ecological systems of the shelf. Kiev, Nauk. dumka, 1990, 240 ð. (In Russian). 27. Fleishman B. S. Basics of systemology. Moscow, Radio i svyaz’, 1982, 368 p. (In Russian). Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|