Arctic: ecology and economy
ISSN 2223-4594
Home Archive of journals Volume 11, No. 2, 2021 Thermal stress assessment for an Arctic city in summer


JOURNAL: Volume 11, No. 2, 2021, p. 219-231

HEADING: Research activities in the Arctic

AUTHORS: Konstantinov, P.I., Varentsov, M.I., Grishchenko, M.Y., Samsonov, T.E., Shartova, N.V.

ORGANIZATIONS: Lomonosov Moscow State University

DOI: 10.25283/2223-4594-2021-2-219-231

UDC: 911.9

The article was received on: 13.01.2021

Keywords: modeling (simulation), bioclimatic index, Physiologically Equivalent Temperature (PET) index, Universal Thermal Climate Index (UTCI), urban heat island, COSMO, thermal comfort

Bibliographic description: Konstantinov, P.I., Varentsov, M.I., Grishchenko, M.Y., Samsonov, T.E., Shartova, N.V. Thermal stress assessment for an Arctic city in summer. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 2, pp. 219-231. DOI: 10.25283/2223-4594-2021-2-219-231. (In Russian).


Despite the fact, that against the background of global warming the Russian Arctic is still a region with severe winters and cool summers; the likelihood of thermal stress conditions in summer is also increasing. At the same time, urban conditions can significantly affect the human heat perception due to the appearance of the urban heat island effect and other factors. Using the example of the city of Nadym (Yamalo-Nenets Autonomous Okrug), the authors have assessed the possibility of the summer urban heat stress occurrence and analyzed its spatial heterogeneity. The article presents the detailed modeling results of the meteorological regime of the city within the framework of the COSMO-CLM model and the assessment of bioclimatic comfort using the Physiologically Equivalent Temperature (PET) index and Universal Thermal Climate Index (UTCI). During periods of the extremely hot weather events in Nadym, the territory meso- and microclimatic mosaicism clearly manifests itself. In anthropogenically altered territories, the frequency of strong heat stress events can exceed that in the background areas by 1.7 times. Urban planning solutions should take into account not only the climatic resistance of Arctic cities to the winter cold, but also be adapted to the occurrence of summer heat.

Finance info: The team of authors performed supercomputer modeling and data analysis with the financial support of the Russian Foundation for Basic Research (RFBR), project No. 18-05-60146. T. E. Samsonov and M. I. Varentsov determined the parameters of the urban environment of Nadym necessary for the model with the financial support of the Russian Foundation for Basic Research in the framework of the project No. 18-05-60126. During their work, the authors used the equipment of the Center for Collective Use of Ultra-High Performance Computing Resources of the Lomonosov Moscow State University.


1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by Th. F. Stocker, D. Qin, G.‑K.  Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley. Cambridge, United Kingdom and New York, NY, USA, Cambridge Univ. Press, 1535 p. Available at: https://doi.org10.1017/CBO9781107415324.

2. Serreze M. C., Barrett A. P., Stroeve J. C. et al. The emergence of surface-based Arctic amplification. The Cryosphere, 2009, vol. 3, iss. 1, p. 11—19. Available at: https://doi.org/10.5194/tc-3-11-2009.

3. Varentsov M., Shartova N., Grischenko M. et al. Spatial patterns of human thermal comfort conditions in Russia: Present climate and trends. Weather, Climate, and Society, 2020, vol. 12, iss. 3, p. 629—642. Available at: https://doi.org/10.1175/WCAS-D-19-0138.1.

4. Vinogradova V. Using the Universal Thermal Climate Index (UTCI) for the assessment of bioclimatic conditions in Russia. Intern. J. of Biometeorology, 2020. Available at: https://doi.org/10.1007/s00484-020-01901-4.

5. Semenova A. A., Konstantinov P. I., Varentsov M. I. et al. Modeling the Dynamics of Comfort Thermal Conditions in Arctic Cities under Regional Climate Change. IOP Conference Series: Earth and Environmental Science, 2019, vol. 386, p. 012017. Available at: https://doi.org/10.1088/1755-1315/386/1/012017.

6. Johannessen O. M., Kuzmina S. I., Bobylev L. P. et al. Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalisation. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 2016, vol. 68, iss. 1. DOI: 10.3402/tellusa.v68.28234.

7. Founda D., Pierros F., Katavoutas G. et al. Observed trends in thermal stress at European cities with different background climates. Atmosphere, 2019, vol. 10, iss. 8. Available at: https://doi.org/10.3390/atmos10080436.

8. Oke T. R., Mills G., Christen A. et al. Urban Climates. [S. l.], Cambridge Univ. Press, 2017, 546 p. Available at: https://doi.org/10.1017/9781139016476.

9. Konstantinov P., Varentsov M., Esau I. A High Density Urban Temperature Network Deployed in Several Cities of Eurasian Arctic. Environmental Research Letters, 2018, vol. 13, iss. 7. Available at: https://doi.org/10.1088/1748-9326/aacb84.

10. Varentsov M., Wouters H., Platonov V. et al. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere, 2018, vol. 9, iss. 2, . 50. Available at: https://doi.org/10.3390/atmos9020050.

11. Miles V., Esau I. Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sensing, 2017, vol. 9, iss. 10. Available at: https://doi.org/10.3390/rs9100989.

12. Miles V., Esau I. Surface urban heat islands in 57 cities across different climates in northern Fennoscandia. Urban Climate, 2020, vol. 31. Available at: https://doi.org/10.1016/j.uclim.2019.100575.

13. Perkins-Kirkpatrick S., Gibson P. Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, 2017, vol. 7, iss. 1, . 12256. Available at: https://doi.org/10.1038/s41598-017-12520-2.

14. Rockel B., Will A., Hense A. The regional climate model COSMO-CLM (CCLM). Meteorol. Zeitschrift, 2008, vol. 17, iss. 4, p. 347—348.

15. Wouters H., Demuzere M., Blahak U. et al. The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geoscientific Model Development, 2016, vol. 9, iss. 9, p. 3027—3054. Available at: https://doi.org/10.5194/gmd-9-3027-2016.

16. Frich A., Alexander L. V., Della-Marta P. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 2002, vol. 19, . 193—212. Available at: https://doi.org/10.3354/cr019193.

17. Rivin G. S., Rozinkina I. A., Vil’fand R. M. et al. The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: the second stage of implementation and development. Russian Meteorology and Hydrology, 2015, vol. 40, no. 6, pp. 400—410. DOI: 10.3103/S1068373915060060.

18. Kislov A. V., Toropov P. A., Platonov V. S. et al. Regional climate modeling for geographical analysis. Vestn. Mosk. un-ta. Ser. 5. Geografiya, 2019, vol. 5, pp. 3—12. (In Russian).

19. Zangl G., Reinert D., Rípodas P. et al. The ICON (ICOsahedral Nonhydrostatic) modelling framework of DWD and MPI-M: Description of the nonhydrostatic dynamical core. Quart. J. of the Royal Meteorological Society, 2015, vol. 141, . 563—579. Available at: https://doi.org/10.1002/qj.2378.

20. Varentsov M. I., Samsonov T. E., Kislov A. V. et al. Simulations of Moscow agglomeration heat island within the framework of the regional climate model COSMO-CLM. Vestn. Mosk. un-ta. Ser. 5. Geografiya, 2017, vol. 6, pp. 25—37. (In Russian).

21. Varentsov M., Konstantinov P., Baklanov A. et al. Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city. Atmos. Chem. Phys., 2018, vol. 18, iss. 23, p. 17573—17587. DOI: 10.5194/acp-18-17573-2018.

22. Smiatek G. Time invariant boundary data of regional climate models COSMO-CLM and WRF and their application in COSMO-CLM. J. Geophys. Res., 2014, vol. 119, iss. 12, p. 7332—7347.

23. Schulz J., Vogel G. Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere [Basel], 2020, vol. 11, iss. 5, . 513. DOI: 10.3390/atmos11050513.

24. Mironov D., Heise E., Kourzeneva E. et al. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res., 2010, vol. 15, iss. 2, p. 218—230.

25. Buchhorn M., Lesiv M., Tsendbazar N. E. et al. Copernicus global land cover layers-collection 2. Remote Sens., 2020, vol. 12, iss. 6, p. 1—14.

26. Varentsov M., Samsonov T., Demuzere M. Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment. Atmosphere [Basel], 2020, vol. 11, iss. 12, p. 1349. DOI: 10.3390/atmos11121349.

27. Samsonov T. E., Varentsov M. I. Computation of City-descriptive Parameters for High-resolution Numerical Weather Prediction in Moscow Megacity in the Framework of the COSMO Model. Russ. Meteorol. Hydrol., 2020, vol. 45, iss. 7, p. 515—521. DOI: 10.3103/S1068373920070079.

28. Matzarakis A., Nastos P. T. Human-biometeorological assessment of heat waves in Athens. Theoretical and Applied Climatology, 2011, vol. 105, p. 99—106. Available at: https://doi.org/10.1007/s00704-010-0379-3.

29. McGregor G. R. Universal Thermal Comfort Index (UTCI). Intern. J. of Biometeorology, 2012, vol. 56, . 419. Available at: https://doi.org/10.1007/s00484-012-0546-6.

30. Matzarakis A., Rutz F., Mayer H. Modelling Radiation Fluxes in Simple and Complex Environments: Basics of the RayMan Model. Intern. J. of Biometeorology, 2010, vol. 54, iss. 2, pp. 131—39. Available at: https://doi.org/10.1007/s00484-009-0261-0.

31. Matzarakis A., Mayer H. Another kind of environmental stress. Thermal stress. WHO News, 1996, vol. 18, pp. 7—10.

32. Bröde P., Fiala D., Błażejczyk K. et al. Deriving the ope­rational procedure for the universal thermal climate index (UTCI). Intern. J. of Biometeorology, 2012, vol. 56, p. 481—494. Available at: https://doi.org/ 10.1007/s00484-011-0454-1.

33. Wolters D., Brandsma T. Estimating the urban heat Island in residential areas in the Netherlands using observations by weather amateur. J. of Applied Meteorology and Climatology, 2012, vol. 51, iss. 4, p. 711—721. Available at: https://doi.org/10.1175/JAMC-D-11-0135.1.

34. Miles V., Esau I. Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sens., 2017, vol. 9, iss. 10, p. 989. Available at: https://doi.org/10.3390/rs9100989.

35. Miles V., Esau I. Surface urban heat islands in 57 cities across different climates in northern Fennoscandia. Urban Climate, 2020, vol. 31, . 100575. Available at: https://doi.org/10.1016/j.uclim.2019.100575.

36. Novak M. Use of the UTCI in the Czech Republic. Geographia Polonica, 2013, vol. 86, iss. 1, p. 21—28. Available at: https://doi.org/10.7163/GPol.2013.3.

37. Provençal S., Bergeron O., Leduc R. et al. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. Intern. J. of Biometeorology, 2016, vol. 60, iss. 4, p. 591—603. Available at: https://doi.org/10.1007/s00484-015-1054-2.

38. Shartova N. V., Shaposhnikov D. A., Konstantinov P. I. et al. Universal thermal climate index (UTCI) applied to determine thresholds for temperature-related mortality. Analiz riska zdorov’yu. [Health Risk Analysis], 2019, no. 3, pp. 83—93. Available at: https://doi.org/10.21668/health.risk/2019.3.10. (In Russian).

Download »

© 2011-2021 Arctic: ecology and economy
DOI 10.25283/2223-4594