Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594
RuEn
Advanced
Search
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home Archive of journals Volume 11, No. 2, 2021 Study of microplastic pollution in the seas of the Russian Arctic and the Far East

STUDY OF MICROPLASTIC POLLUTION IN THE SEAS OF THE RUSSIAN ARCTIC AND THE FAR EAST

JOURNAL: Volume 11, No. 2, 2021, p. 164-177

HEADING: Ecology

AUTHORS: Ershova, A.A., Eremina, T.R., Dunayev, A.L., Makeeva, I.N., Tatarenko, Y.A.

ORGANIZATIONS: Russian State Hydrometeorological University

DOI: 10.25283/2223-4594-2021-2-164-177

UDC: 504.42

The article was received on: 29.12.2020

Keywords: pollution, Russian Arctic, Northern Sea Route, micro-plastics, marine litter

Bibliographic description: Ershova, A.A., Eremina, T.R., Dunayev, A.L., Makeeva, I.N., Tatarenko, Y.A. Study of microplastic pollution in the seas of the Russian Arctic and the Far East. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2021, vol. 11, no. 2, pp. 164-177. DOI: 10.25283/2223-4594-2021-2-164-177. (In Russian).


Abstract:

The pollution of the seas in the Russian Arctic zone with micro-plastic particles is poorly studied in comparison with other areas of the World Ocean. The rapidly developing economic activity in the Arctic region threats to pollute the marine environment with plastic wastes. Arctic marine ecosystems are particularly vulnerable due to changes occurring in them under climate warming, as well as a large number of filter-feeder species in some coastal areas. The lack of observation data on the level of micro-plastic pollution in the region and methodological support for sampling requires the development of methods and approaches using the existing international experience. The paper presents preliminary results of the study carried out within the framework of the 4th stage of the TRANSARCTICA-2019 program in the Far Eastern and Arctic seas from Vladivostok to Murmansk. The authors present the analysis of existing approaches to sampling in seawaters and the possibility of their application in Russian expeditionary conditions. They describe in detail their method of sampling from a subsurface level (4—5 m) showing the advantage of using the proposed method for sampling when the vessel is moving and under adverse weather conditions. The studied quantitative and qualitative composition of the detected micro-plastic particles show that the East Siberian and Laptev seas have the lowest concentrations of micro-plastics. The largest amount of micro-plastic particles is found in the areas of intensive shipping in the Sea of Okhotsk and the Barents Sea. Comparison with existing international studies shows that the sampling method for micro-plastics strongly depends on the type of water body, its biological productivity, the level of pollution, as well as the technical capabilities of field research. All this indicates the need for intercalibration of sampling methods and further research for a more accurate quantitative and qualitative assessment of the micro-plastic pollution in the Arctic seas.


Finance info: The work was implemented in frames of the State Assignment of the Ministry for science and higher education of the Russian Federation, project FSZU-2020-0009, title: Research of physical, chemical and biological processes in the atmosphere and hydrosphere under conditions of climate change and anthropogenic impacts.

References:

1. Thompson R. C., Olsen Y., Mitchell R. P., Davis A., Rowland S. J., John A. W. G., McGonigle D., Russell A. E. Lost at sea: where is all the plastic? Science, 2004, vol. 304, p. 838.

2. Andrady A. L. Plastics and the environment. A. L. Andrady (ed.). [S. l.], John Wiley and Sons, 2003. ISBN 0-471-09520-6.

3. Reisser J. W., Slat B., Noble K., du Plessis K., Epp M., Proietti M. et al. The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre. Biogeosciences, 2015, 12, p. 1249—1256.

4. Moore C. J. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ. Res., 2008, 108 (2), pp. 131—139.

5. Cincinelli A., Scopetani C., Chelazzi D., Lombardini E., Martellini T., Katsoyiannis A., Fossi M. C., Corsolini S. Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere, 2017, 175, 391e400.

6. Lusher A. Microplastics in the Marine Environment: Distribution, Interactions and Effects. Marine anthropogenic litter. Eds.: M. Bergman, M. Klages and L. Gutow. [S. l.], Springer, 2015, pp. 245—308. DOI 10.1007/978-3-319-16510-3.

7. Mato Y., Isobe T., Takada H., Kanehiro H., Ohtake C., Kaminuma T. Plastic resin pellets as a transport medium of toxic chemicals in the marine environment. Environ. Sci. Technol., 2001, 35, pp. 318—324.

8. Rios L. M., Moore C. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar. Pollut. Bull., 2007, 54 (8), pp. 1230—1237.

9. Zarfl C., Matthies M. Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar. Pollut. Bull., 2010, 60 (10), pp. 1810—1814.

10. Desktop Study on Marine Litter Including Microplastics in the Arctic. Protection of the Arctic marine environment. PAME. [S. l.], 2019.

11. Cózar A., Echevarría F., González-Gordillo J., Irigoien X., Úbeda B., Hernández-León S., Palma Á. T., Navarro S., García-de-Lomas J., Ruiz A. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. U.S.A., 2014, 111, pp. 10239—10244.

12. Cózar A., Martí E., Duarte C. M., García-de-Lomas J., Sebille E. V., Ballatore T. J., Eguíluz V. M., González-Gordillo J. I., Pedrotti M. L., Echevarría F., Troublè R., Irigoien X. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Science advances, 2017, no. 3 (4), pp. 1—8. DOI: 10.1126/sciadv.1600582.

13. Lusher A. L. et al. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci. Rep., 2015, 5, 14947. DOI: 10.1038/srep14947.

14. Obbard R. W., Sadri S., Wong Y. Q., Khitun A. A., Baker I., Thompson R. C. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future, 2014, 2 (6), pp. 315—320.

15. Bergmann M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 2019, 5 (8), eaax1157. Available at: https://doi.org/10.1126/sciadv.aax1157.

16. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC. Geneva, Switzerland, 2014, 151 p.

17. Semiletov I. P., Pipko I. I. Runoffs and sources of carbon dioxide in the Arctic Ocean (based on direct instrumental measurements). Dokl. Akad. nauk, 2007, vol. 414, no. 3, . 393—397. (In Russian).

18. Shakhova N. E., Sergienko V. I., Semiletov I. P. Carbon cycle in the seas of the Eastern Arctic at the turn of the XX—XXI centuries. B. 1. Transport and transformation of carbon in the land-shelf system. Tomsk, Ed. TPU, 2017, 535 p. (In Russian).

19. Matishov G. G., Denisov V. V., Dzhenyuk S. L., Makare­vich P. R. Large marine ecosystems of the shelf seas of the Russian Arctic. Land and marine ecosystems. Murmansk, Paulsen, 2011, . 71—97. (In Russian).

20. Van Sebille E., England M. H., Froyland G. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environmental Research Letters, 2012, 7, 044040.

21. Lebreton L. C. M., Greer S. D., Borrero J. C. Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull., 2012, 64, pp. 653—661.

22. Chubarenko I., Bagaev A., Zobkov M., Esiukova E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull., 2016, vol. 108, no. 1—2, pp. 105—112.

23. Chubarenko I., Esiukova E., Isachenko I., Demchenko N., Efimova I., Bagaeva M., Khatmullina L., Bagaev A., Zobkov M. Behavior of microplastics in coastal zones. Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency. [S. l.], 2018, pp. 175—223.

24. Bagaev A., Khatmullina L., Chubarenko I. Anthropogenic microlitter in the Baltic Sea water column. Mar. Pollut. Bull., 2018, vol. 129, no. 2, pp. 918—923.

25. Chubarenko I. P., Esiukova E. E., Bagaev A. V., Bagaeva M. A., Grave A. N. Three-dimensional distribution of anthropogenic microparticles in the body of sandy beaches. Science of the total environment, 2018, vol. 628—629, pp. 1340—1351. Available at: https://doi.org/10.1016/j.scitotenv.2018.02.167.

26. Esiukova E. Plastic contamination on the Baltic beaches of Kaliningrad region, Russia. Mar. Pollut. Bull., 2017, vol. 114 (2), pp. 1072—1080. Available at: https://doi.org/10.1016/j.marpolbul.2016.10.001.

27. Chubarenko I., Stepanova N. MPs in sea coastal zone: Lessons learned from the Baltic amber. Environ. Pollut., 2017. 224, pp. 243—254. Available at: http://dx.doi.org/10.1016/j.envpol.2017.01.085.

28. Eremina T., Ershova A., Martin G., Shilin M. Marine litter monitoring: review for the Gulf of Finland coast. IEEE/OES Baltic International Symposium (BALTIC). [S. l.], 2018, 8 p. DOI: 10.1109/BALTIC.2018.8634860.

29. Eremina T. R., Ershova A. A. Beached marine litter in the Russian part of the Gulf of Finland: monitoring methods and accumulation trends. From small scales to large scales — The Gulf of Finland Science Days 2019. [S. l.], 2019, p. 8.

30. Haseler M., Balciunas A., Hauk R., Sabaliauskaite V., Chubarenko I., Ershova A., Schernewski G. Marine Litter Pollution in Baltic Sea Beaches — Application of the Sand Rake Method. Front. Environ. Sci. 2020, 8, 599978. DOI: 10.3389/fenvs.2020.599978.

31. Ershova A. A., Eremina T. R., Chubarenko I. P., Esiukova E. E. Marine Litter in the Russian Gulf of Finland and South-East Baltic: Application of Different Methods of Beach Sand Sampling. The Handbook of Environmental Chemistry. Berlin, Heidelberg, Springer, 2021. Available at: https://doi.org/10.1007/698_2021_746.

32. Agarkova-Lyakh I. V., Sibirtsova E. N. Adaptation of the method of granulometric analysis for studying of microplastic pollution of deposits of a coastal zone of the sea. Principles of the Ecology, 2019, no. 3 (33), . 155—162. (In Russian).

33. Marine Litter in the Black Sea. Turkish Marine Research Foundation (TUDAV). Aytan Ü., Pogojeva M., Simeonova A. (eds.). Publication no. 56. Istanbul, Turkey, 2020, 361 p.

34. Martyanov S. D., Ryabchenko V. A., Ershova A. A., Eremina T. R., Martin G. On the assessment of microplastic distribution in the Eastern part of the Gulf of Finland. Fundamental and Applied Hydrophysics, 2019, vol. 3, p. 32—41. DOI: 10.7868/S207366731904004X.

35. Semiletov I. P. The main results of the integrated interregional expedition aboard the R / V Akademik Mstislav Keldysh: new data on the features of the functioning of the lithosphere — hydrosphere — cryosphere — atmosphere geosystems in the seas of the eastern Arctic. Results of expeditionary research in 2019 in the World Ocean, inland waters and on the Spitsbergen archipelago. Conference materials. Sevastopol, 2020, . 51—52. (In Russian).

36. Ershova A. A., Eremina T. R., Frolova N. S., Tenilova O. V. Results of hydrometeorological studies of the RSHU in the Barents, Kara and White Seas in 2019 as part of the Arctic Floating University program. Results of expeditionary research in 2019 in the World Ocean, inland waters and on the Spitsbergen archipelago. Conference materials. Sevastopol, 2020, . 110—111. (In Russian).

37. Blinovskaya Ya. Yu., Kulikova O. A., Mazlova E. A., Gavrilo M. V. Microplastic in the coastal soil of the Arctic and Far Eastern seas. Ekologiya i prom-st’ Rossii, 2020, vol. 24, no. 4, . 16—19. (In Russian).

38. Blinovskaya Ya. Yu., Yakimenko A. L. Analysis of pollution of the water area of the Peter the Great Bay (Sea of Japan) with microplastics. Uspekhi sovrem. yestestvoznaniya, 2018, no. 1, . 68—73. (In Russian).

39. Vesman A., Moulin E., Egorova A., Zaikov K. Marine litter pollution on the Northern Island of the Novaya Zemlya archipelago. Mar. Pollut. Bull., 2020, vol. 150, . 110671.

40. Tošić N., Vruggink M., Vesman A. Microplastics quantification in surface waters of the Barents, Kara and White Seas. Mar. Pollut. Bull., 2020, vol. 161, pt. A, . 111745. Available at: https://doi.org/10.1016/j.marpolbul.2020.111745.

41. Masura J., Baker J., Foster G., Courtney A.  Laboratory methods for the analysis of MPs in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48, 2015, 31 p.

42. Galgani F., Hanke G., Werner S., Oosterbaan L., Nilsson P., Fleet D., Kinsey S., Van Franeker J., Vlachogianni T., Scoullos M., Mira Veiga J., Palatinus A., Matiddi M., Maes T., Korpinen S., Budziak A., Leslie H., Gago J., Liebez G. Guidance on monitoring of marine litter in European Seas. European Commission, Joint Research Centre. MSFD Technical Subgroup on Marine Litter (TG ML), 2013, no. EUR 26113, pp. 1—126.

43. Cole M., Webb H., Lindeque P. K., Fileman E. S., Halsband C., Galloway T. S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Scientific Reports, 2014, 4 (4528).

44. Hidalgo-Ruz V., Gutow L., Thompson R., Thiel M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 2012, 46 (6), pp. 3060—3075. DOI: 10.1021/es2031505.

45. Jun-Li Xu, Thomas K., Luo Z., Gowen A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends in Analytical Chemistry, 2019, vol. 119, p. 115629. Available at: https://doi.org/10.1016/j.trac.2019.115629.

46. Makeeva I. N., Ershova A. A., Eremina T. R., Tatarenko Yu. A. Research of microplastic pollution of the Arctic seas. Seas of Russia: Studies of the Coastal and Shelf Zones. Proc. All-Russian scientific conference (XXVIII Coastal Conference). Sevastopol, 2020, . 397—398. (In Russian).

47. Rist S., Vianello A., Sichlau Winding M. H., Nielsen T. G., Almeda R., Rodríguez Torres R., Vollertsen J. Quantification of plankton-sized microplastics in a productive coastal Arctic marine ecosystem. Environ. Pollut., 2020, vol. 266, pt. 1, p. 115248. ISSN 0269-7491, Available at: https://doi.org/10.1016/j.envpol.2020.115248.

48. Lusher A. L., Burke A., O’Connor I., Officer R. Microplastic pollution in the Northeast Atlantic Ocean: validated and opportunistic sampling. Mar. Pollut. Bull., 2014, 88 (1—2), pp. 325—333.

49. Zobkov M. B., Esyukova . . Microplastics in the Marine Environment: Review of Methods of Selection, Preparation and Analysis of Samples of Water, Sediments and Coastal Sediments. Oceanology, 2018, vol. 58, n. 1, . 137—143. DOI: 10.1134/S0001437017060169.

50. Shim et al. Identification methods in microplastic analysis: a review. Analytical methods. Royal Society of Chemistry, 2017, 9, p. 1384. DOI: 10.1039/c6ay02558g.

51. Tagg A. S., Harrison J. P., Ju-Nam Y., Sapp M., Bradley E. L., Sinclair C. J., Ojeda J. J.. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem. Commun., 2017, 53, p. 372. DOI: 10.1039/c6cc08798a.

52. Tekman M. B., Wekerle C., Lorenz C., Primpke S., Hasemann C., Gerdts G., Bergmann M. Tying up loose ends of microplastic pollution in the Arctic: distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Env. Sci. & Techn. 2020, 54 (7), pp. 4079—4090.

53. Kanhai La Daana, Gårdfeldt K., Lyashevska O., Hassellöv M., Thompson R. C., O’Connor I. Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull., 2018, 130, pp. 8—18.

54. Morgana S., Ghigliotti L., Estévez-Calvar N., Stifanese R., Wieckzorek A., Doyle T., Christiansen J. S., Faimali M., Garaventa F. Microplastics in the Arctic: a case study with sub-surface water and fish samples off Northeast Greenland. Environ. Pollut., 2018, 242, pp. 1078—1086.

55. Mu J., Zhang S., Qu L., Jin F., Fang C., Ma X., Zhang W., Wang J. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull., 2019, 143, pp. 58—65. Available at: https://doi.org/10.1016/j.marpolbul.2019.04.023.

56. Magnusson K., Jörundsdóttir H., Norén F., Lloyd H., Talvitie J., Setälä O. Microlitter in sewage treatment systems A Nordic perspective on waste water treatment plants as pathways for microscopic anthropogenic particles to marine systems. TemaNord report, 2016, 510.

57. Talvitie J., Heinonen M., Paakkonen J.-P. et al. Do Wastewater Treatment Plants Act as a Potential Point Source of Microplastics? Preliminary Study in the Coastal Gulf of Finland, Baltic Sea. Water Sci. Technol., 2015, 72 (9), pp. 1495—1504.


Download »


© 2011-2021 Arctic: ecology and economy
DOI 10.25283/2223-4594