Arctic: ecology and economy
ISSN 2223-4594
Home Archive of journals Issue 3(39) 2020 Coastal geosystems of the Kara Sea in a changing climate


JOURNAL: 2020, 3(39), p. 73-86

HEADING: Research activities in the Arctic

AUTHORS: Vanshtein B.G., Streletskaya I.D., Pismeniuk A.A.

ORGANIZATIONS: Lomonosov Moscow State University, I. S. Gramberg All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean

DOI: 10.25283/2223-4594-2020-3-73-86

UDC: 551.345.3

The article was received on: 14.05.2020

Keywords: permafrost rocks, methane, coast of the Kara Sea, coastal processes, organic carbon, geochemistry of ground ice and sediments

Bibliographic description: Vanshtein B.G., Streletskaya I.D., Pismeniuk A.A. Coastal geosystems of the Kara Sea in a changing climate. Arctic: ecology and economy, 2020, no. 3(39), pp. 73-86. DOI: 10.25283/2223-4594-2020-3-73-86. (In Russian).


Current climate changes cause an increase both in coastal retreat rates and in sediment intake of the water area. The presence of ground ice in coastal outcrops additionally accelerates these processes. The researchers identify two morphological types of coastal zone destruction for the Western part of the Arctic — linear and volumetric. The retreat rate in some areas reaches 3 m/year and above. Together with terrigenous material, organic matter, gases, occluded in ice and sediments, and low-valent metal ions (mainly Fe (II)) enter the water, thus causing a change in physicochemical parameters of the coastal zone environment. The researches performed geochemical studies of ground ice and host sediments on three sections of the Kara Sea coast (Spindler area; Marre-Sale subsoil; Sopochnaya Karga subsoil). The results allowed developing a geochemical model of changes in the geosystems of the coastal-shelf zone under current climate warming conditions in the Arctic. The researchers have identified processes causing changes in coastal geosystems: a decrease in the concentration of oxygen in water due to the oxidation of substances coming from decaying coastal deposits, the drift of fine particles into coastal waters, and the release of gases during destruction of permafrost and ground ice. The volume of oxygen consumed during coastal destruction is comparable in order of magnitude with its volume obtained in the process of photodissociation of water in the upper atmosphere. The oxidation of Fe (II) during thawing of the permafrost requires the amount of oxygen contained in about 1 km3 of water. In the absence or limitation of the rapid exchange of water masses inside the basin, the oxygen contained in seawater will be completely exhausted for iron oxidation, which will lead to both complete stagnation of the coastal biota and development of anaerobic processes. Significant variations in the CH4 concentrations in sediments and ice indicate possible accumulations of these gases in “traps” inside frozen rocks. Their destruction can be dangerous for coastal geosystems.

Finance info: The studies are supported by the RFBR grant No.18-05-60080 Dangerous nival-glacial and cryogenic processes and their influence on the infrastructure in the Arctic and partial support within the framework of the State assignment on the topic Earth Cryosphere Change under the Influence of Natural Factors and Technogenesis AAAA Research-A16-116032810095-6, PP 55 Arctic.


1. Lantuit H., Overduin P. P., Couture N. et al. The Arctic Coastal Dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries and Coasts, 2012, vol. 35, pp. 383—400. DOI: 10.1007/s12237-0109362-6.
2. Vasil’ev A. A., Streletskaya I. D., Cherkashev G. A., Vanshtein B. G. Dinamika beregov Karskogo morya. [Coastal dynamics of the Kara Sea]. Kriosfera Zemli, 2006, vol. 10, no. 2, pp. 56—67. (In Russian).
3. Kizyakov A. I., Leibman M. O., Perednya D. D. Destruktivnye rel’efoobrazuyushchie protsessy poberezhii arkticheskikh ravnin s plastovymi podzemnymi l’dami. [Destructive reliefgforming processes at the coasts of the Arctic plains with tabular ground ice]. Kriosfera Zemli, 2006, vol. 10, no. 2, pp. 79—89. (In Russian).
4. Kritsuk L. N., Dubrovin V. A., Yastreba N. V. Rezul’taty kompleksnogo izucheniya dinamiki beregovoi zony Karskogo morya v raione meteostantsii Marre-Sale s ispol’zovaniem GIS-tekhnologii. [Results of complex study of the Kara Sea shore dynamics in the area of the meteorological station Marre-Sale, using GIS-tecnologies]. Kriosfera Zemli, 2014, vol. 18, no. 4, pp. 59—69. (In Russian).
5. Kosheleva V. A., Yashin D. S. Donnye osadki arkticheskikh morey Rossii. [The bottom sediments of the Russia Arctic Seas]. Pod red. I. S. Gramberga. St. Petersburg, VNIIOkeangeologiya, 1999, 286 p. (In Russian).
6. Rachold V., Grigoriev M. N., Are F. E. et al. Coastal erosion vs riverine sediment discharge in the Arctic shelf seas. Intern. J. Earth Sci., 2000, no. 89, pp. 450—460. DOI: 10.1007/s005310000113.
7. Stein R., Macdonald R. W. Organic carbon budget: Arctic Ocean vs. Global Ocean // The organic carbon cycle in the Arctic Ocean. R. Stein, R. W. Macdonald (eds.). Berlin, Springer Verl., 2003, pp. 169—177. DOI: 10.1007/978-3-642-18912-8_8.
8. Streletskaya I. D., Vasil’ev A. A., Kanevskii M. Z. et al. Organicheskii uglerod v chetvertichnykh otlozheniyakh poberezh’ya Karskogo morya. [Organic carbon in the coastal Quaternary sediments of the Kara Sea]. Kriosfera Zemli, 2006, vol. 10, no. 4, pp. 35—43. (In Russian).
9. Rivkina E. M., Kraev G. N., Krivushin K. V. et al. Metan v vechnomerzlykh otlozheniyakh severo-vostochnogo sektora Arktiki. [Methane in Permafrost of Northeastern Arctic]. Kriosfera Zemli, 2006, vol. 10, no. 3, pp. 23—41. (In Russian).
10. Vasil’ev A. A., Streletskaya I. D., Oblogov G. E. Emissiya metana pri razrushenii beregov Karskogo morya. [Methane emission due to Kara Sea shores destruction]. Nauchnoe setevoe izdanie “Aktual’nye problemy nefti i gaza”. IPNG RAN, 2018, vol. 4, pp. 1—3. DOI: 10.29222/ipng.2078-5712.2018-23.art52. (In Russian).
11. Streletskaya I. D., Vasil’ev A. A., Oblogov G. E. et al. Metan v podzemnykh l’dakh i merzlykh otlozheniyakh na poberezh’e i shel’fe Karskogo morya. [Methane in ground ice and frozen sediments in the coastal zone and on the shelf of Kara Sea]. Led i Sneg, 2018, 58 (1), pp. 65—77. DOI: 10.15356/2076-6734-2018-1-65-77. (In Russian).
12. Shakhova N., Semiletov I., Salyuk A. et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science, 2010, no. 327, pp. 1246—1250. DOI: 10.1126/science.1182221.
13. Streletskiy D. A., Anisimov O. A., Vasiliev A. A. Permafrost degradation. Snow and Ice-Related Hazards, Risks and Disasters. Chap. 10. [S. l.], Elsevier, 2014, pp. 303—344. DOI: 10.1016/B978-0-12-394849-6.00010-X.
14. Sovetskaya Arktika. Morya i ostrova Severnogo Ledovitogo okeana. [Soviet Arctic Seas and Islands of the Polar Basin]. Red. Ya. Ya. Gakkel’, L. S. Govorukha. Moscow, Nauka, 1970, 526 p. (In Russian).
15. Are F. E. Termoabraziya morskikh beregov. [Thermal abrasion of sea coasts]. Moscow, Nauka, 1980, 159 p. (In Russian).
16. Vasil’ev A. A., Pokrovskii S. I., Shur Yu. L. Dinamika termoabrazionnykh beregov Zapadnogo Yamala. [Dinamics of the coastal thermoerosion of West Yamal]. Kriosfera Zemli, 2001, vol. 5, no. 1, pp. 44—52. (In Russian).
17. Barabanov V. F. Sovremennye fizicheskie metody v geokhimii. [Modern physical methods in geochemistry]. Leningrad, Izd. LGU, 1990, 389 p. (In Russian).
18. Drago R. Fizicheskie metody v khimii. Moscow, Mir, 1981, 424 p. (In Russian).
19. Liver E. Elektronnaya spektroskopiya neorganicheskikh soedinenii: V 2 ch. [Electronic spectroscopy of inorganic compounds. In 2 parts. Chap. 2]. Moscow, Mir, 1987, 445 p. (In Russian).
20. Gol’dfarb Yu. I., Ezhova A. B. Iskopaemye plastovye l’dy na p-ove Yugorskom. [Fossil tabular ice on Yugorsky Peninsula]. Voprosy razvitiya i osvoeniya merzlykh tolshch. Yakutsk, In-t merzlotovedeniya SO AN SSSR, 1990, pp. 22—31. (In Russian).
21. Leibman M. O., Vasil’ev A. A., Rogov V. V. et al. Issledovanie plastovogo l’da Yugorskogo poluostrova kristallograficheskimi metodami. [Massive ground ice studies on Yugorskiy pe- ninsula, using crystallographic methods]. Kriosfera Zemli, 2000, vol. 4, no. 2, pp. 31—40. (In Russian).
22. Manley W. F., Lokrants H., Gataullin V. N. et al. Late Quaternary stratigraphy, Radiocarbon chronology, and Glacial history at cape Shpindler, Southern Kara Sea, Arctic Russia. Global and Planetary Change, 2001, vol. 31, pp. 239—254. DOI: 10.1016/S0921-8181(01)00122-9.
23. Vanshtein B. G., Leibman M. O., Piven’ P. I. et al. Izuchenie genezisa plastovogo l’da na osnovanii analiza raspredeleniya redkozemel’nykh elementov. [Tabular ground ice origin study based on rare earth element distribution.]. Kriosfera Zemli, 2002, vol. 4, no. 4, pp. 40—48. (In Russian).
24. Forman S. L., Ingolfsson O., Gataullin V. et al. Late Quaternary stratigraphy, glacial limits and paleoenvironments of Maresale area, western Yamal Peninsula, Russia. Quaternary Research, 2002, vol. 21, pp. 1—12. DOI: 10.1130/0091-7613(1999)0272.3.CO;2.
25. Kanevskii M. Z., Vasil’ev A. A., Streletskaya I. D. Zakonomernosti formirovaniya kriogennogo stroeniya chetvertichnykh otlozhenii Zapadnogo Yamala (na primere raiona Marre-Sale). [Formation of cryogenic structure of Quaternary sediments in Western Yamal (by the example of Marre-Sale area)]. Kriosfera Zemli, 2005, vol. 9, no. 3, pp. 16—27. (In Russian).
26. Kritsuk L. N. Podzemnye l’dy Zapadnoi Sibiri. [Ground Ice of Western Siberia]. Moscow, Nauch. mir, 2010, 352 p. (In Russian).
27. Streletskaya I. D., Vasil’ev A. A., Oblogov G. E., Matyukhin A. G. Izotopnyi sostav podzemnykh l’dov Zapadnogo Yamala (Marre-Sale). [Isotopic composition on ground ice in Western Yamal (Marre-Sale)]. Led i Sneg, 2013, no. 2, pp. 83—92. (In Russian).
28. Vasiliev A. A., Kanevskiy M. Z., Cherkashov G. A., Vanshtein B. G. Coastal dynamics at the Barents and Kara Sea key sites. Geo Marine Lett., 2005, no. 25, pp. 110—120. DOI: 10.1007/s00367-004-0192-z.
29. Streletskaya I. D., Vanshtein B. G., Vasil’ev A. A. et al. Osobennosti nakopleniya i promerzaniya otlozhenii v perekhodnoi zone susha-more (Zapadnaya Arktika). [Peculiarities of accumulation and freezing of deposits in the transitional land-sea zone (Western Arctic)] Geologiya morei i okeanov. Materialy XXIII Mezhdunarodnoi nauchnoi konferentsii (Shkoly) po morskoi geologii. Moskva, 18—22 noyabrya 2019 g. Moscow, IO RAN, 2019. Vol. 1, pp. 213—217. (In Russian).
30. Gusev E. A. Nablyudeniya za geomorfologicheskimi protsessami na severe Zapadnoi Sibiri (na primere raiona Sopochnoi Kargi). [Observations of geomorphological processes in northern West Siberia (a case of the Sopochnaya Karga area)]. Uspekhi sovrem. estestvoznaniya, 2011, no. 9, pp. 19—22. (In Russian).
31. Streletskaya I. D., Gusev E. A., Vasil’ev A. A. et al. Geokriologicheskoe stroenie chetvertichnykh otlozhenii beregov Zapadnogo Taimyra. [Cryolithology stratification of quaternary sediments from West Taymyr coasts]. Kriosfera Zemli, 2013, vol. 17, no 3, pp. 17—26. (In Russian).

Download »

© 2011-2020 Arctic: ecology and economy
DOI 10.25283/2223-4594