Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Home Archive of journals No. 3(39) 2020 Possible seismogenic trigger mechanism of abrupt activation of methane emission and climate warming in the Arctic


JOURNAL: No. 3(39) 2020, p. 62-72

HEADING: Research activities in the Arctic

AUTHORS: Lobkovsky, L.I.

ORGANIZATIONS: P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2020-3-62-72

UDC: 551.24

The article was received on: 08.06.2020

Keywords: permafrost rocks, activation of methane emission, sharp warming of the climate, the great earthquakes, Aleutian subduction zone, tectonic waves, trigger mechanism, metastable gas hydrates, gas filtration

Bibliographic description: Lobkovsky, L.I. Possible seismogenic trigger mechanism of abrupt activation of methane emission and climate warming in the Arctic. Arctic: ecology and economy, 2020, no. 3(39), pp. 62-72. DOI: 10.25283/2223-4594-2020-3-62-72. (In Russian).


The author proposes a seismogenic trigger mechanism to explain the abrupt activation of methane emission and climate warming phases in the Arctic as a result of strong mechanical disturbances in the marginal region of the Arctic lithosphere, caused by the great earthquakes in the Aleutian subduction zone, the transfer of these disturbances to the Arctic shelf and adjacent regions, and the trigger effect of the methane release from permafrost sedimentary rocks and metastable gas hydrates with subsequent emissions of greenhouse gas into the atmosphere.

Finance info: The research was performed within the framework of the state assignment of the P.P. Shirshov Institute of Oceanology, RAS (theme no. 0149-2019-0005) and the project of the Russian Science Foundation (grant no. 20-17-00140).


1. Kvenvolden K. A. Methane hydrates and global climate. Glob. Biogeochem. Cycles, 1988, no. 2, pp. 221—229.
2. Koven C. D., Ringeval B., Friedlingstein P., Ciais P., Cadul P., Khvorostyanov D., Krinner G., Tamocai C. Permafrost carbon-climate feedback accelerated global warming. Proc. Natl Acad. Sci. USA, 2011, no. 108 (36), pp. 14769—14774. DOI: 10.1073/pnas.1103910108.
3. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G. et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane flux and role of sea ice. Philos Trans A Math Phys Eng Sci, 2015, no. 373 (2052), 20140451. DOI: 10.1098/rsta.2014.0451.
4. Shakhova N., Semiletov I., Gustafsson O., Sergienko V., Lobkovsky L., Dudarev O., Tumskoy V., Grigoriev M., Mazurov A., Salyuk K. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Comms, 2017, no. 8, 15872. DOI: 10.1038/ncomms15872.
5. Sergienko V. I., Lobkovsky L. I., Semiletov I. P. et al. Degradatsiya podvodnoi merzloty i razrushenie gidratov shel’fa morei Vostochnoi Arktiki kak vozmozhnaya prichina “metanovoi katastrofy”: nekotorye rezul’taty kompleksnyi issledovanii 2011 goda. [The degradation of submarine permafrost and the destruction of hydrates on the shelf of East Arctic seas as a potential cause of the methane catastrophe: some results of integrated studies in 2011]. Dokl. Akad. nauk, 2012, no. 3 (446), pp. 330—335. (In Russian).
6. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N. Degazatsiya Zemli v Arktike: kompleksnye issledovaniya rasprostraneniya bugrov pucheniya i termokarstovykh ozer s kraterami vybrosov gaza na poluostrove Yamal. [Earth Degassing in the Arctic: Comprehensive Studies of the Distribution of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal Peninsula]. Arktika: ekologiya i ekonomika, 2019, no. 4 (36), pp. 52—68. DOI: 10.25283/2223-4594-2019-4-52-68. (In Russian).
7. Monitoring sotsial’no-ekonomicheskogo razvitiya Arkticheskoi zony Rossii: Informatsionnyi byulleten’. [Monitoring the socio-economic development of the Arctic zone of Russia]. Tsentr ekonomiki Severa i Arktiki, 2020, iss. 50 (1—31 mar.), pp. 21—22. Available at: https://963a4334-2b68-4690-8cbf-11e0da0f83f6.filesusr.com/ugd/f29d46_83d606a3306a45a4ae069cb7528f804f.pdf. (In Russian).
8. Laverov N. P., Lobkovsky L. I., Kononov M. V., Dobretsov N. L., Vernikovsky V. A., Sokolov S. D., Shipilov E. V. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian Continental Shelf. Geotectonics, 2013, vol. 47 no. 1, . 1—30. DOI: 10.1134/S0016852113010044.
9. Lobkovsky L. I., Kononov M. V., Shipilov E. V. Geodynamic model of upper mantle convection and transformations of the arctic lithosphere in the Mesozoic and Cenozoic. Izvestiya. Physics of the Solid Earth, 2013, vol. 49 no. 6, . 767—785. DOI: 10.1134/S1069351313060104.
10. Elsasser W. V. Convection and stress propagation in the upper mantle: in The Application of Modern Physics to the Earth and Planetary Interiors. Ed. by S. K. Runcorn. N.Y., John Wiley, 1967, pp. 223—246.
11. Melosh H. J. Nonlinear stress propagation in the Earth’s upper mantle. J. Geophys. Res, 1976, no. 32 (81), pp. 5621—5632.
12. Garagash I. A. Fazovye perekhody kak vozmozhnyi istochnik kolebatel’nykh dvizhenii litosfery. [Phase transitions as possible origin of the lithosphere’s oscillating motion]. Dokl. AN SSSR, 1984, no. 5 (297), pp. 1069—1073. (In Russian).
13. Barenblatt G. I., Lobkovsky L. I., Nigmatulin R. I. A mathematical model of gas outflow from gas-saturated ice and gas hydrates. Doklady Earth Sciences, 2016, vol. 470, no. 2, . 1046—1049. DOI: 10.1134/S1028334X16100019.
14. Ershov E. D., Lebedenko Yu. P., Chuvilin E. M., Yakushev V. S. Eksperimental’nye issledovaniya mikrostroeniya aglomerata led — gidrat metana. [Experimental studies of the ice–methane hydrate agglomerate microstructure]. Inzhener. geologiya, 1990, no. 3, pp. 38—44. (In Russian).
15. Yakushev V. S. Prirodnyi gaz i gazovye gidraty v kriolitozone. [Natural gas and gas hydrates in cryolithozone]. Moscow, VNIIGAZ, 2009, 192 p. (In Russian).
16. Lobkovsky L. I., Ramazanov M. M. Theory of Filtration in a Double Porosity Medium. Doklady Earth Sciences, 2019, vol. 484, no. 1, . 105—108. DOI: 10.1134/S1028334X19010252.
17. rzhanov . ., alakhova V. D., khov I. I. Simulation of the Conditions for the formation and dissoiation of methane hydrate over the last 130 000 years. Doklady Earth Sciences, 2018, vol. 480, no. 2, . 826—830. DOI: 10.1134/S1028334X18060211.
18. Sitnov S. A., Mokhov I. I. Anomalies in the atmospheric methane content over Northern Eurasia in the summer of 2016. Doklady Earth Sciences, 2018, vol. 480. no. 1, . 637—641. DOI: 10.1134/S1028334X18050173.
19. Mokhov I. I., Smirnov D. A. Estimating the contributions of the Atlantic multidecadal oscillation and varitions in the atmospheric concentration of greenhouse gases to surface air temperature trends from observations. Doklady Earth Sciences, 2018, vol. 480, no. 1, . 602—606. DOI: 10.1134/S1028334X18050069.
20. Denisov S. N., Yeliseev A. V., Mokhov I. I. Contribution of natural and anthropogenic emissions of 2 and 4 to the atmosphere from the territory of Russia to global climate changes in the twenty-first century. Doklady Earthy Sciences, 2019, vol. 488, no. 1, . 1066—1071. DOI: 10.1134/S1028334X19090010.
21. Muryshev . ., Yeliseev A. V., Denisov S. N. Mokhov I. I. rzhanov . ., Timazhev A. V. Phase shift between changes of global temperature and CO2 content under external emissions of greenhouse gases into the atmosphere. Izvestiya — Atmospheric and Oceanic Physics. 2019, vol. 55, no. 3. . 235—241. DOI: 10.1134/S0001433819030046.

Download »

© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594