| ||||
| ||||
Home » Archive of journals » No. 3(39) 2020 » Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions EARTH DEGASSING IN THE ARCTIC: THE GENESIS OF NATURAL AND ANTHROPOGENIC METHANE EMISSIONSJOURNAL: No. 3(39) 2020, p. 6-22HEADING: Ecology AUTHORS: Bogoyavlensky, V.I., Sizov, O.S., Nikonov, R.A., Bogoyavlensky, I.V., Kargina, T.N. ORGANIZATIONS: Oil and Gas Research Institute of RAS DOI: 10.25283/2223-4594-2020-3-6-22 UDC: 502.171, 504.4, 504.7 The article was received on: 29.07.2020 Keywords: craters of gas blowout, methane, greenhouse gases, pockmarks, Popigai astrobleme, Circum-Arctic region, gas emission, Yamal peninsula, remote sensing of the Earth, thermokarst lakes, coalbed methane, gas migration, Tunguska coal basin, Sentinel-5P Bibliographic description: Bogoyavlensky, V.I., Sizov, O.S., Nikonov, R.A., Bogoyavlensky, I.V., Kargina, T.N. Earth degassing in the Arctic: the genesis of natural and anthropogenic methane emissions. Arctic: ecology and economy, 2020, no. 3(39), pp. 6-22. DOI: 10.25283/2223-4594-2020-3-6-22. (In Russian). Abstract: Through the analysis of the methane concentration in the Circum-Arctic region according to the data of the TROPOMI spectrometer (satellite Sentinel-5P ESA) the authors revealed strong natural anomalies in the Arctic zone of Russia and suggested possible reasons for their formation. For the northern part of the Siberian platform, the authors have substantiated models of the elevated methane emissions into the atmosphere due to sub-vertical migration from the Cambrian deposits and/or sub-horizontal gas migrations from the regional coal-bearing deposits of the Tunguska, Lena and Taimyr basins. According to ultra-high resolution remote sensing data, the researchers have identified 1860 zones of active degassing with gas emission craters at the bottom of 1667 thermokarst lakes, 2 bays and 4 rivers on the Yamal Peninsula. These zones have unambiguous connection with the areas of elevated methane concentration in the atmosphere recorded by the TROPOMI spectrometer. The authors have outlined the necessity of further TROPOMI data validation in different natural conditions of Arctic land and water, including zones of active subsurface use. Finance info: The research was conducted according to the state assignment on the topic “Rational nature management and effective development of oil and gas resources in the Arctic and Subarctic zones of the Earth” (No. ÀÀÀÀ-À19-119021590079-6). References: 1. Avetov N. R., Krasnova E A., Yakushev V. S. Nekotoriye osobennosti priustyevykh gazoproyavleniy iz intervala kriolitozony na territorii Yamburgskogo neftegazokondensatnogo mestorozhdeniya [Some peculiarities of near-wellhead gas shows on the territory of Yamburg oil, gas and condensate field]. Gazovaya prom-st’, 2017, no. 8. pp. 44—47. (In Russian). 2. Bogoyavlensky V. I. Arktika i Mirovoi okean: sovremennoe sostoyanie, perspektivy i problemy osvoeniya resursov uglevodorodov. Monografiya. [Arctic and the World Ocean: current state, perspectives and challenges of hydrocarbon production. Monograph]. Tr. Volnogo ekon. o-va, 2014, vol. 182, no. 3, pp. 12—175. (In Russian). 3. Bogoyavlensky V. I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala. [The threat of catastrophic gas blowouts form the Arctic cryolithozone. Yamal craters]. Burenie i neft’, 2014, no. 9, pp. 13—18. (In Russian). 4. Bogoyavlensky V. I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala. Pt. 2. [The threat of catastrophic gas blowouts form the Arctic cryolithozone. Yamal and Taymyr craters. Pt. 2]. Burenie i neft’, 2014, no. 10, pp. 4—8. (In Russian). 5. Bogoyavlensky V. I., Bogoyavlensky I. V., Bogoyavlenskaya O. V., Nikonov R. A. Perspektivy neftegazonosnosti sedimentatsionnikh basseynov i fundamenta Tsirkumarkticheskogo regiona. [Oil and gas occurrence prospects of the Circum-arctic sedimentation basins and basement]. Geologiya nefti i gaza, 2017, no. 5, pp. 5—20. (In Russian). 6. BogoyavlenskyV. I. Gazogidrodinamika v kraterakh vybrosa gaza v Arktike. [Gas-hydrodynamics in the Arctic craters of gas blowout]. Arktika: ekologiya i ekonomika, 2018, no. 1 (29), pp. 48—55. DOI: 10.25283/2223- 594-2018-1-48-55. (In Russian). 7.Bogoyavlensky V. I., Bogoyavlensky I. V., Sizov O. S., Nikonov R. A. Tekhnologii distantsionnogo viyavleniya I monitoring degazatsii Zemli v Arktike: poluostrov Yamal, ozero Neito. [Technologies for remote detection and monitoring of the Earth degassing in the Arctic: Yamal peninsula, Neito lake]. Arktika: ekologiya i ekonomika, 2018, no. 2 (30), pp. 83—93. DOI: 10.25283/2223-4594-2018-2-83-93. (In Russian). 8. Bogoyavlensky V. I., Bogoyavlensky I. V. Prirodnye i tekhnogennye ugrozy pri poiske, razvedke i razrabotke mestorozhdeniy uglevodorodov v Arktike. [Natural and technogenic threats in prospecting, exploration and development of hydrocarbon fields in the Arctic]. Miner. resursy Rossii. Ekonomika i upravlenie, 2018, no. 2, pp. 60—70. (In Russian). 9. Bogoyavlensky V. I., Sizov O. S., Mazharov A. V., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N., Kishankov A. V. Degazatsiya Zemli v Arktike: distantsionnye i ekspeditsionnye issledovaniya katastroficheskogo Seyakhinskogo vybrosa gaza na poluostrove Yamal. [Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula]. Arktika: ekologiya i ekonomika, 2019, no. 1 (33), pp. 88—105. DOI: 10.25283/2223-4594-2019-2-31-47. (In Russian). 10. Bogoyavlensky V. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N. Degazatsiya Zemli v Arktike: kompleksnyye issledovaniya rasprostraneniya bugrov pucheniya i termokarstovykh ozer s kraterami vybrosov gaza na poluostrove Yamal. [Earth Degassing in the Arctic: Comprehensive Studies of the Distribution of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal Peninsula]. Arktika: ekologiya i ekonomika, 2019, no. 4 (36), pp. 52—68. DOI: 10.25283/2223-4594-2019-4-52-68. (In Russian). 11. BogoyavlenskyV. I. Prirodnye i tekhnogennye ugrozy pri osvoenii mestorozhdeniy goryuchikh iskopaemykh v kriolitosfere Zemli. [Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere]. Gornaya prom-st’, 2020, no. 1 (149), pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian). 12. Badu Y. B. Kriogennaya tolscha gazonosnykh struktur Yamala. O vliyanii gazovykh zalezhey na formirovaniye i razvitiye kriogennoy tolschi. [Cryogenic stratum of gas-bearing structures of Yamal. On the influence of gas deposits on the formation and development of a cryogenic stratum]. Moscow, Nauch. mir, 2018, 232 p. (In Russian). 13.Bondur V. G., Kuznetsova T. V. Vyyavlenie gazovykh sipov v akvatoriyakh arkticheskikh morey s ispol’zovaniem dannykh distantsionnogo zondirovaniya. [Detection of gas seeps in the Arctic offshore areas, using remote sensing data]. Issledovanie Zemli iz kosmosa, 2015, no. 4, pp. 30—43. DOI: 10.7868/S020596141504003X. (In Russian). 14. Vlasov A. N., Khimenkov A. N., Volkov-Bogorodskiy D. B., Levin Yu. K. Prirodnyye vzryvnyye protsessy v kriolitozonye. [Natural explosive processes in cryolithozone]. Nauka i tekhnol. razrabotki, 2017, vol. 96, no 3, pp. 41—56. (In Russian). 15. Geokriologiya SSSR. Srednaya Sibir’. [Geocryology of the USSR. Middle Siberia]. Ed. by E. D. Yershov. Moscow, 1989, 414 p. (In Russian). 16. Kruglikov N. M., Kuzin I. L. Vykhody glubinnogo gaza na Urengoyskom mestorozhdenii. [Emissions of deep gas on the Urengoy field]. Strukturnaya geomorfologiya i neotektonika Zapadnoy Sibiri v svyazi s neftegazonosnostyu, 1973, pp. 96—106. (Tr. ZapSibNIGNI, iss. 37). (In Russian). 17.KuzinI. L. O prirode anomal’nykh ozer — pokazateley uglevodorodov v glubokikh gorizontakh osadochnogo chekhla. [About the nature of blue lakes — the indicators of hydrocarbon accumulations in deep horizons of sedimentary cover]. Problemy otsenki novykh zon neftegazonakopleniya v osnovnykh produktivnykh tolschakh Zapadnoy Sibiri. St. Petersburg, VNIGRI, 1992, pp. 129—137. (In Russian). 18. Laverov N. P., Bogoyavlensky V. I., Bogoyavlensky I. V. Fundamentalnyye aspekty ratsionalnogo osvoyeniya resursov nefti i gaza Arktiki i shelfa Rossii: strategiya, perspektivy i problem. [Fundamental aspects of rational Russian Arctic and shelf oil and gas resources development: strategy, perspectives and challenges]. Arktika: ekologiya i ekonomika, 2016, no. 2 (22), pp. 4—13. (In Russian). 19. Melnikov D. V. Primenemiye dannykh OMI/Aura dlya zadach monitoring izverzheniy vulkanov Kamchatki. [The use of OMI/Aura data for Kamchatka volcanos monitoring]. Sovremenniye problem distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, vol. 5, no. 1, pp. 371—375. (In Russian). 20. Osipov V. I. Opasniye prirodniye protsessy — strategicheskiye riski Rossii. [Dangerous natural processes — strategic risks of Russia]. Moscow, Znaniye, 2009, iss. 15, 40 p. (In Russian). 21. Decree of the Russian President “O sokrashchenii vibrosov parnikonvykh gazov”. [On the reduction of greenhouse gases emission] from 30th of September, 2013 no. 752. Available at: http://www.kremlin.ru/acts/bank/37646. (In Russian). 22. Semyonov S. M., Govor I. L., Uvarova N. E. et al. Rol’ metana v izmenenii klimata. [The role of methane in the climate change]. Ed. by A. G. Ishkov. Moscow, IGKE, 2018, 106 p. (In Russian). 23. Sergienko V. I., Lobkovsky L. I., Semiletov I. P. et al. Degradatsiya podvodnoy merzloty i razrushenie gidratov shelfa morey Vostochnoy Arktiki kak vozmozhnaya prichina “metanovoy katastrofy”: nekotorye rezultaty kompleksnyh issledovaniy 2011 goda. [The degradation of submarine permafrost and the destruction of hydrates on the shelf of the East Arctic seas as a potential cause of the methane catastrophe: some results of integrated studies in 2011]. Dokl. Akad. nauk, 2012, vol. 446, no. 3, pp. 330—335. (In Russian). 24. Sizov O. S. Distantsionniy analiz posledstviy poverkhnostnykh gazoproyavleniy na severe Zapadnoy Sibiri. [Remote analysis of the surface gas shows consequences in the north of Western Siberia]. Geomatika, 2015, no. 1, pp. 53—68. (In Russian). 25. Andreassen K., Hubbard A., Winsborrow M. et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science, 356, 2017, 18 p. DOI: 10.1126/science.aal4500. 26. Bogoyavlensky V. Gas Blowouts on the Yamal and Gydan Peninsulas. GeoExPro, [London], 2015, vol. 12, no. 5, Oct., p. 74—78. 27. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kishankov A. Complex of Geophysical Studies of the Seyakha Catastrophic Gas Blowout Crater on the Yamal Peninsula, Russian Arctic. Geosciences, 2020, 10, 215. 22 p. Available at: https://doi.org/10.3390/geosciences10060215. 28. Chuvilin E., Sokolova N., Davletshina D. et al. Conceptual Models of Gas Accumulation in the Shallow Permafrost of Northern West Siberia and Conditions for Explosive Gas Emissions. Geosciences, 2020, 10 (5), 195, pp. 1—13. Available at: https://doi.org/10.3390/geosciences10050195. 29. Chuvilin E., Stanilovskaya J., Titovsky A. et al. A Gas-Emission Crater in the Erkuta River Valley, Yamal Peninsula: Characteristics and Potential Formation Model. Geosciences, 2020, 10, 170, pp. 1—16. Available at: https://doi:10.3390/geosciences10050170. 30. Collins W. D., Feldman D. R., Kuo Ñ., Nguyen Ò. Ð. Large regional shortwave forcing by anthropogenic methane informed by Jovian observations. Science Advances, 2018, vol. 4, no. 9, eaas9593. DOI: 10.1126/sciadv.aas9593. 31. Jacob D. J., Turner A. J., Maasakkers J. D., Sheng J. et al. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 2016, 16 (22), pp. 14371—14396. 32. Judd A., Hovland M. Seabed Fluid Flow. The Impact on Geology, Biology, and the Marine Environment. Cambridge, 2007. 475 ð. 33. Ingmann P., Veihelmann B., Langen J. et al. Requirements for the GMES Atmosphere Service and ESA’s implementation concept: Sentinels-4/-5 and-5p. Remote Sensing of Environment, 2012, 120, pp. 58—69. 34. Kanga M., Kannoa C. M., Reida M. C. et al. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. PNAS, 2014, 111 (51), pp. 18173—18177. Available at: https://doi.org/10.1073/pnas.1408315111. 35. Lambert J.-C., Compernolle S., Eichmann K.-U. et. al. Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #06: April 2018 — February 2020. S5P MPC Routine Operations Consolidated Validation Report series, Issue #06, Version 06.0.1, 2020. 154 p. Available at: http://s5p-mpc-vdaf.aeronomie.be/ProjectDir/reports/pdf/S5P-MPC-IASB-ROCVR-06.0.1-20200330_FINAL.pdf. 36. McGlade C., Michaels K. C., Gould T. Global methane emissions from oil and gas. Insights from the updated IEA Methane Tracker. IEA, 31 Mar. 2020. Available at: https://www.iea.org/articles/global-methane-emissions-from-oil-and-gas. 37. Olefeldt D., Goswami S., Grosse G. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun., 2016, 7, 13043. DOI: 10.1038/ncomms13043. 38. Sentinel-5P OFFL CH4: Offline Methane. Available at: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CH4. 39. Sheng J., Song S., Zhang Y., Prinn R. G., Janssens-Maenhout G. Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends. Environmental Science & Technology Letters, 2019, 6 (8), pp. 473—478. DOI: 10.1021/acs.estlett.9b00294. 40. Trends in Atmospheric Methane. NOAA. Global Monitoring Laboratory. 2020. Available at: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/. 41. Walter K. M., Zimov S., Chanton J. P., Verbyla D., Chapin III F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 2006, 443, 71—75. DOI: 10.1038/nature05040. 42. Walter K. M., Smith L. C., Chapin III F. S. Methane bubbling from northern lakes: present and future contributions to the global methane budget Phil. Trans. R. Soc. A (2007) 365, pp. 1657—1676. DOI:10.1098/rsta.2007.2036. 43. Problemy zarozhdeniya I evolyutsii biosphery. Ch. 2 [Problems of biosphere genesis and evolution. Pt. 2]. Ed. by E. M. Galimov. Moscow, KRASSAND, 2013, 640 p. (In Russian). 44. Gosudarstvennaya geologicheskaya karta SSSR. Karta dochetvertichnykh obrazovaniy [State geological map of USSR. Map of Pre-Quaternary deposits]. R-48-(50). Scale 1:1 000 000. Leningrad, VSEGEI, 1979. (In Russian). 45. Karta uglenosnosti, slantsenosnosti i geokhinicheskoy spetsializatsii ugley I goryuchikh slantsev Rossii. [Map of coal and shale bearing and geochemical specialization of coals and oil shales of Russia]. By B. B. Golubev, V. V. Kryukov, A. A. Smyslov, L. I. Tikhomirov, ed. by Yu. N. Malyshev. St. Petersburg, VSEGEI, 1998. (In Russian). 46. Massaytis V. L. et. al. Almazonosnye impaktity Popigaiskoi astroblemy. [Diamond bearing impact glasses of Popigay astrobleme]. St. Petersburg, VSEGEI, 1998, 165 p. (In Russian). 47. Gorshkov V. Taymyrskiy dnevnik. Goryashchiye ugli Byrranga. [Taimyr diary. Pt. 7. Burning coals of Byrranga]. Available at: https://vitaly-gorshkov.livejournal.com/9719.html. (In Russian). 48. Shishkin M. A., Faybusovich Ya. E., Shkarubo S. I., Nazarov D. V. et al. Gosudarstvennaya Geologicheskaya karta Rossiyskoy Federatsii. Mashtab 1:1 000 000 (tretye pokoleniye). Seriya Zapadno-Sibirskaya. List R-42 — p-ov Yamal. Obyasnitelnaya zapiska [The State Geological map of Russian Federation. Scale 1:1 000 000 (third generation). Western Siberian series. Sheet R-42 — Yamal peninsula. Explanatory letter]. St. Petersburg, Kartograf. f-ka VSEGEI, 2015, 366 p. (In Russian). 49. Skorobogatov V. A., Stroganov L. V., Kopeev V. D. Geologicheskoe stroenie i gazoneſt enosnost’ Yamala. [Geological structure and oil and gas potential of Yamal]. Moscow, OOO “Nedra-Biznestsentr”, 2003, 352 p. (In Russian). 50. Edelshtein K. K., Alabyan A. M., Gorin S. L., Popryadukhin A. A. Gidrogeologicheskiye osobennosti krupneyshikh ozyor poluostrova Yamal. [Hydrological and hydrochemical features of the largest lakes of the Yamal peninsula]. Tr. KNTs RAN, 2017, no. 10, pp. 3—16. DOI: 10.17076/lim571. (In Russian). Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|