| ||||
| ||||
Home » Archive of journals » No. 2(38) 2020 » Portable photovoltaic power supply for low temperature applications PORTABLE PHOTOVOLTAIC POWER SUPPLY FOR LOW TEMPERATURE APPLICATIONSJOURNAL: No. 2(38) 2020, p. 134-143HEADING: New technologies for the Arctic AUTHORS: Tarasenko, A.B., Menshikov, Y.A., Suleymanov, M.Z., Kiseleva, S.S. ORGANIZATIONS: Lomonosov Moscow State University, Joint Institute for High Temperatures of the Russian Academy of Sciences, LLC YAROSTANMASH DOI: 10.25283/2223-4594-2020-2-134-143 UDC: 620.98:621.311.61 The article was received on: 13.03.2020 Keywords: environmental test, portable power supply, photoelectric converter, lithium-ion battery, charge controller, extreme regulation Bibliographic description: Tarasenko, A.B., Menshikov, Y.A., Suleymanov, M.Z., Kiseleva, S.S. Portable photovoltaic power supply for low temperature applications. Arctic: ecology and economy, 2020, no. 2(38), pp. 134-143. DOI: 10.25283/2223-4594-2020-2-134-143. (In Russian). Abstract: The paper describes autonomous power supply for small and mobile consumers such as reindeer farmers, tourists, geological groups, emergency teams and others, operating for a long time outside the centralized power supply networks and in tough environment conditions. The authors consider the development and operation issues of portable power supplies based on renewable energy power sources in extreme climatic conditions. The authors present the developed autonomous portable photovoltaic power supply, its operation algorithm and technical parameters. The power supply contains high-performance silicon photoelectric modules based on heterojunctions, a high-capacity lithium-ion battery with a built-in heater, and a charge controller with the function of extreme power control and balancing of the battery cells. Finance info: The portable power supply using solar energy was developed with the financial support of the Federal State Budgetary Institution “Foundation for Assistance to Small Innovative Enterprises (FASIE)”, Agreement No. 2872ÃÑ1/45454 (27.03.2019). References: 1. Escalante Soberanis M. A., Fernandez A. M. A Review on the Technical Adaptations for Internal Combustion Engines to Operate with Gas/Hydrogen Mixtures. Intern. J. of Hydrogen Energy, 2010, vol. 35, pp. 12134—12140. Available at: https://doi.org/10.1016/j.ijhydene.2009.09.070. 2. Obydenkova S. V., Pearce J. M. Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes. Renewable Energy, 2016, no. 89, pp. 253—267. Available at: https://doi.org/10.1016/j.renene.2015.12.036. 3. The HOMER Pro®microgrid software by HOMER Energy. Available at: https://www.homerenergy.com/products/pro/index.html. 4. Eroglu M., Dursun E., Sevencan S., Song J., Yazici S., Kilic O. A Mobile Renewable House Using Pv/Wind/Fuel Cell Hybrid Power System. Intern. J. of Hydrogen Energy, 2011, no. 36, pp. 7985 — 7992. Available at: https://doi.org/10.1016/j.ijhydene.2011.01.046. 5. Dalton G. J., Lockington D. A., Baldock T. E. Case Study Feasibility Analysis of Renewable Energy Supply Options for Small to Medium-Sized Tourist Accommodations. Renewable Energy, 2009, no. 34, pp. 1134—1144. Available at: https://doi.org/10.1016/j.renene.2008.06.018. 6. Kang J., Jayaram S. H., Rawlins J., Wen J. Characterization of Thermal Behaviors of Electrochemical Double Layer Capacitors (EDLCs) with Aqueous and Organic Electrolytes. Electrochimica Acta, 2014, no. 144, pp. 200—210. Available at: https://doi.org/10.1016/j.electacta.2014.07.158. 7. Bi K., Zhao S.-X., Huang C., Nan C.-W. Improving Low-Temperature Performance of Spinel LiNi0.5Mn1.5O4 Electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 Full-Cell by Coating Solid-State Electrolyte Li-Al-Ti-P-O. J. of Power Sources, 2018, vol. 389, pp. 240—248. Available at: https://doi.org/10.1016/j.jpowsour.2018.03.071. 8. Wang Y., Chu Z., Feng X., Han X., Lu L., Li J., Ouyang M. Overcharge Durability of Li4Ti5O12 Based Lithium-Ion Batteries at Low Temperature. J. of Energy Storage, 2018, vol. 19, pp. 302—310. Available at: https://doi.org/10.1016/j.est.2018.08.012. 9. Popel O. S., Tarasenko A. B. Hybrid Electric Energy Storages: their Specific Features and Application (Review). Thermal Engineering, 2018, vol. 65, nî. 5, ðð. 266—281. DOI: 10.1134/S0040601518050099. 10. Hevel Group of Companies website. Available at: https://www.hevelsolar.com. 11. EP SOLAR Charge Controller User Manual. Available at: https://www.epsolarpv.com/upload/cert/file/1811/Tracer-AN-SMS-EL-V1.0.pdf. 12. Li S., Ping A., Liu Y., Ma X., Li C. A Variable-Weather-Parameter MPPT Control Strategy Based on MPPT Constraint Conditions of PV System with Inverter. Energy Conversion and Management, 2019, October, vol. 197, no. 1, p. 111873. Available at: https://doi.org/10.1016/j.solener.2020.02.065. 13. Popel O. S., Tarasenko A. B., Titov V. F. Utility Model Patent. Autonomous light-signaling device. RU (11) 142 175(13) U1. 20.06.2014. Byul. no 1. Available at: https://yandex.ru/patents/doc/RU142175U1_20140620. (In Russian). 14. NASA POWER (Prediction Of Worldwide Energy Resources). Available at: https://power.larc.nasa.gov/. 15. Komarova N. A., Rafikova Yu. Y., Tarasenko A. B., Kiseleva S. V. Autonomous Power Supply Using Solar Energy in Russian Far East Regions. MATEC Web of Conferences, 2017, no. 112, p. 10011. Available at: https://doi.org/10.1051/matecconf/201711210011. Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|