| ||||
| ||||
Home » Archive of journals » No. 1(37) 2020 » Geophysical model of the Earth’s crust, geodynamic conditions and prospects for discovering Carlin-type ore deposits in the Arctic zone of the Republic of Sakha (Yakutia) GEOPHYSICAL MODEL OF THE EARTH’S CRUST, GEODYNAMIC CONDITIONS AND PROSPECTS FOR DISCOVERING CARLIN-TYPE ORE DEPOSITS IN THE ARCTIC ZONE OF THE REPUBLIC OF SAKHA (YAKUTIA)JOURNAL: No. 1(37) 2020, p. 82-94HEADING: Study and development of nature resources of the Arctic AUTHORS: Volkov, A.V., Galyamov, A.L. ORGANIZATIONS: Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS DOI: 10.25283/2223-4594-2020-1-82-94 UDC: 553.411(571.56-18) The article was received on: 15.11.2019 Keywords: Arctic zone, metallogenic forecast, Republic of Sakha (Yakutia), Sakindzhi ore region, Carlin-type ore deposits Bibliographic description: Volkov, A.V., Galyamov, A.L. Geophysical model of the Earth’s crust, geodynamic conditions and prospects for discovering Carlin-type ore deposits in the Arctic zone of the Republic of Sakha (Yakutia). Arctic: ecology and economy, 2020, no. 1(37), pp. 82-94. DOI: 10.25283/2223-4594-2020-1-82-94. (In Russian). Abstract: A comparative metallogenic analysis of the geodynamic conditions for the formation of Carlin Type Ore Deposits (CTOD) is performed on the basis of modern geophysical models of the lithosphere of the Verkhoyansk, Nevada and South China metallogenic provinces. The southeastern trend of the CTOD of the Sakindzhi ore area in the Yakutia Arctic zone of the Verkhoyansk province corresponds to the trend of the average density and temperature of the upper mantle. A similar direction is also noted in the structure of the Moho surface. The Nevada and Sakindzhi CTOD and deposits of the Guizhou region (South China) are spatially confined to areas with an average thickness of the earth’s crust (on mantle uplifts or their slopes). The Nevada and Sakyndzhi gold ore deposits are confined to the crustal areas with the smallest thickness of a weakly metamorphosed sedimentary layer, while the pattern is not observed in the location of the South Chinese CTOD. The Nevada and Sakyndzhi deposits are spatially controlled by relatively less dense and warmer sections of the upper mantle. The South Chinese CTOD are localized on the border of the “warmed” and “cooled” region of the upper mantle. The similarity of the geodynamic conditions in the formation of the Nevada and Sakyndzhi CTOD is revealed that confirms high prospects for the discovery of large deposits in this Arctic region of Yakutia. New ore areas with CTOD are forecasted throughout the Chersko-Polousnensky folded belt (Kolyma loop). Finance info: This research is financially supported by the RFFI — Russian Foundation for Basic Research (Grant No. 18-05-70001) “Studying the geological and geodynamic conditions for the formation of large strategic metal deposits in the Russian Arctic zone: conclusions for forecasting and searching of new deposits”. References: 1. Volkov A. V. Sidorov A. A. Geologo-geneticheskaya model’ mestorozhdeniy zolota Karlinskogo tipa. [Geological and genetic model of Karlinsky type gold deposits]. Litosfera, 2016, no. 6, ðð. 145—165. (In Russian). 2. Mineral commodity summaries 2019. U.S. Geological Survey. [S. l.], 2019, 196 p. 3. Berger V. I., Mosier D. L., Bliss J. D., Moring B. C. Sediment-Hosted Gold Deposits of the World-Database and Grade and Tonnage Models. Open-File Report 2014-1074, June 2014, Virginia, Reston, U.S. Geological Survey, 2014, 46 p. 4. Laske G., Masters G., Reif C. A New Global Crustal Model at 2×2 Degrees (CRUST2.0). Available at: http://igppweb.ucsd.edu/~gabi/rem.dir/crust/crust2.html. 5. Pospelov I. I., Buyankin A. G., Krasnov A. N. Geodinamicheskiye usloviya formirovaniya i perspektivy poiskov zolotorudnykh mestorozhdeniy tipa Karlin v Severo-Vostochnoy Yakutii. [Geodynamic conditions of formation and prospects of prospecting for gold deposits of the Karlin type in northeastern Yakutia]. Vestn. Goskomgeologii RS(YA), 2002, no. 2, ðð. 14—18. (In Russian). 6. Sampietro D., Reguzzoni M., Negretti N. The GEMMA crustal model: First validation and data distribution. ESA Spec. Publ., 2013, vol. 722, 30 p. 7. Cammarano F., Guerri M. Global thermal models of the lithosphere. Geophys. J. Int. 2017, vol. 210, ðð. 56—72. 8. Bassin C., Laske G., Masters G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81, F897, 2000. 9. Bouman J., Ebbin J., Meekes S. et al. GOCE gravity gradient data for lithospheric modeling. Int. J. Appl. Earth Observ. Geoinf., 2015, vol. 35, ðð. 16—30. 10. Tosdal R. M., Wooden J. L., Kistler R. W. Inheritance of Nevadan mineral belts from Neoproterozoic continental breakup. Geology and Ore Deposits 2000: The Great Basin and Beyond. Geological Society of Nevada Symposium Proc. Reno, 2000, ðð. 451—466. 11. Cline J. S., Hofstra A. H., Muntean J. L., Tosdal R. M., Hickey K. A. Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models. Econ. Geol. 100th Anniversary Volume. Ed. by J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, J. P. Richards. [S. l.], Society of Economic Geologists, 2005, ðð. 451—484. 12. Emsbo P., Hofstra A. H., Launa E. A. Origin of high-grade gold ore, source of ore fluid component, and genesis of the Meikle, and Neighboring Carlin-type deposits, Northern Carlin trend, Nevada. Econ. Geol. 2003, vol. 98, ðð. 1069—1105. 13. Bloomstein E. I., Massingill G.L., Parratt R. L., Peltonen D. R. Discovery, geology, mineralization of the Rabbit Creek gold deposit, Humboldt County, Nevada. Geology and ore deposits of the Great Basin. Reno: Geological Society of Nevada, 1991, ðð. 821—843. 14. Morrow J. R., Sandberg C. A. Evolution of Devonian carbonate-shelf margin, Nevada. Geosphere, 2008, no. 4. ðð. 445—458. 15. Kashubin S. N., Petrov O. V., Mil’shteyn Ye. D., Kudryavtsev I. V., Androsov Ye. A., Vinokurov I. Yu., Tarasova O. A., Erinchek Yu. M. Glubinnoye stroyeniye zemnoy kory i verkhney mantii Severo-Vostochnoy Yevrazii. [The deep structure of the earth’s crust and upper mantle of North-East Eurasia]. Regional’naya geologiya i metallogeniya, 2018, no. 76, ðð. 9—21. (In Russian). 16. Tenzer R., Bagherbandi M., Gladkikh V. Signature of the upper mantle density structure in the refined gravity data. Comput. Geosci., 2012, no. 16, ðð. 975—986. 17. Nutt C. J., Hofstra A. H. Alligator Ridge: A shallow Carlin-type gold district. Econ. Geol., 2003, vol. 98, ðð. 1225—1241. 18. Madrid R. J., Roberts R. J. Origin of gold belts in north central Nevada. Geology and Ore Deposits of the Great Basin, Field Trip Guidebook. Compendium. Reno, Geological Society of Nevada, 1991, ðð. 927—939. 19. Murphy J. B., Oppliger G. L., Brimhall Jr. G. H., Hynes A. Plume-modified orogeny: An example from the western United States. Geology, 1998, vol. 26., ðð. 731—734. 20. Oppliger G. L., Murphy J. B., Brimhall Jr. G. H. Is the ancestral Yellowstone hotspot responsible for the Tertiary “Carlin” mineralization in the Great Basin of Nevada? Geology, 1997, vol. 25., ðð. 627—630. 21. Hofstra A. H., Christensen O. D. Comparison of Carlin-type Au deposits in the United States, China, and Indonesia — Implications for genetic models and exploration: U.S. Geological Survey Open-File Report 2002-0131. Ch. 2. [S. l.], 2002, 94 p. 22. Litherland M. M., Klemperer S. L. Crustal structure of the Ruby Mountains metamorphic core complex, Nevada, from passive seismic imaging. Geosphere, 2017, vol. 13, ðð. 1506—1523. 23. Wannamaker P. E., Doerner W. M. Crustal structure of the Ruby Mountains and southern Carlin Trend region, Nevada, from magnetotelluric data. Ore Geol. Rev., 2002, vol. 21, ðð. 185—210. 24. Aristov V. V., Kryazhev S. G., Ryzhov O. B., Wolfson A. A., Prokofiev V. Yu., Sidorova N. V., Sidorov A. A. Istochniki flyuidov i rudnogo veshchestva zolotoy i sur’myanoy mineralizatsii Adychanskogo rudnogo rayona (Vostochnaya Yakutiya, Rossiya). [Fluid Sources for Gold and Antimony Mineralization. Adychansky Ore District (Eastern Yakutia, Russia)]. Dokl. Akad. nauk, 2017, vol. 476, ðð. 986—991. (In Russian). 25. Berger V. I., Mamonov S. V. Regional’nyy zonal’nyy metamorfizm terrigennogo kompleksa Verkhoyano-Kolymskoy skladchatoy sistemy Problemy regional’nogo i udarnogo metamorfizma. [Regional zonal metamorphism of the terrigenous complex of the Verkhoyansk-Kolyma folded system]. Problems of regional and impact metamorphism. Tr. VSEGEI, 1972, vol. 238, ðð. 76—85. (In Russian). 26. Thompson G. A., Talwani M. Crustal structure from Pacific Basin to Central Nevada. J. Geophys. Rex, 1964, vol. 69, pp. 4813—4837. 27. Kaban M. K., Mooney W. Density structure of the lithosphere in the southwestern United States and its tectonic significance. J. Geophys. Rex., 2001, vol. 106., ðð. 721—740. 28. West J. D., Fouch M. J., Roth J. B., Elkins-Tanton L. T. Vertical mantle flow associated with a lithospheric drip beneath the Great Basin. Nature Geoscience, 2009. DOI: 10.1038/ngeo526. 29. Baranov V. V. Rifovyye sistemy v silure i rannem devone Severo-Vostoka Azii. [Reef systems in the Silurian and Early Devonian of Northeast Asia]. Otechestv. geologiya, 2007, no. 5, ðð. 43—50. (In Russian). 30. Konstantinovskiy A. A. Osadochnyye formatsii Verkhoyanskogo poyasa i obstanovki ikh nakopleniya. [Sedimentary formations of the Verkhoyansk belt and the conditions of their accumulation]. Litologiya i polez. iskopayemyye, 2009, no. 1, ðð. 65—86. (In Russian). 31. Kutygin R. V. Osnovnyye cherty stratigrafii i paleogeografii nizhnedulgalakhskogo regional’nogo pod”yarusa permskoy sistemy Yakutii. [The main features of stratigraphy and paleogeography of the Lower Dulgal regional sub-stage of the Permian system of Yakutia]. Prirodn. resursy Arktiki i subarktiki, 2018, vol. 25, no. 3, ðð. 5—21. DOI: 10.31242/2618-9712-2018-25-3-5-21. (In Russian). Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|