| ||||
| ||||
Home » Archive of journals » No. 1(37) 2020 » Study of catastrophic gas blowout zones in the Arctic based on passive microseismic monitoring (on the example of Lake Otkrytiye) STUDY OF CATASTROPHIC GAS BLOWOUT ZONES IN THE ARCTIC BASED ON PASSIVE MICROSEISMIC MONITORING (ON THE EXAMPLE OF LAKE OTKRYTIYE)JOURNAL: No. 1(37) 2020, p. 53-64HEADING: Research activities in the Arctic AUTHORS: Bogoyavlensky, V.I., Erokhin, G.N., Nikonov, R.A., Bogoyavlensky, I.V., Bryksin, V.M. ORGANIZATIONS: Oil and Gas Research Institute of RAS, Gubkin Russian State University of Oil and Gas (National Research University), Immanuel Kant Baltic Federal University DOI: 10.25283/2223-4594-2020-1-53-64 UDC: 502:631.4(98), 004.93:550.8 The article was received on: 09.01.2020 Keywords: volcano, gas blowout (emission), remote sensing of the Earth, crater, Yamal peninsula, Lake Otkrytiye, gas-hydrodynamics, microseismic monitoring, 4D microseismic survey Bibliographic description: Bogoyavlensky, V.I., Erokhin, G.N., Nikonov, R.A., Bogoyavlensky, I.V., Bryksin, V.M. Study of catastrophic gas blowout zones in the Arctic based on passive microseismic monitoring (on the example of Lake Otkrytiye). Arctic: ecology and economy, 2020, no. 1(37), pp. 53-64. DOI: 10.25283/2223-4594-2020-1-53-64. (In Russian). Abstract: For the first time, the technology of 4D passive microseismic monitoring (MSM) was used to study powerful gas blowout from the Earth’s cryolithosphere in the Arctic. In the region of the deep thermokarst Lake Otkrytiye (Discovery), an active strong subvertical gas-hydrodynamic zone was revealed by MSM 4D. Based on the patterns of microseismic events distribution, the migration of formation fluids (primarily gas) was proved from the Cenomanian water-gas-saturated deposits of the Upper Cretaceous with powerful gas eruptions from the bottom of Lake Otkrytiye resulting in the formation of giant craters with a diameter of up to 30-40 m. The MSM 4D method contributes to solving the challenges of preventing and eliminating emergencies of a natural and man-made nature, and therefore belongs to the category of critical technologies. Finance info: The authors are grateful to the Russian Academy of Sciences and the Russian Foundation for Basic Research for supporting scientific and field work (RFBR grant No. 18-05-70106 “Development of scientific and technical foundations and a set of technical and software-algorithmic means for microseismic monitoring of the process of subsoil degassing on land and in the waters of the Extreme North”); PJSC NOVATEK, OJSC Yamal LNG, and personally to E. A. Kot for considerable assistance in the logistical support of expeditionary work. References: 1. Bogoyavlensky V. I. Arktika i Mirovoi okean: sovremennoe sostoyanie, perspektivy i problemy osvoeniya resursov uglevodorodov. Monografiya. [Arctic and the World Ocean: current state, perspectives and challenges of hydrocarbon production. Monograph]. Tr. Vol’nogo ekon. o-va, 2014, vol. 182, no. 3, pp. 12—175. (In Russian). 2. Bogoyavlensky V. I. Vybrosy gaza i nefti na sushe i akvatoriyakh Arktiki i Mirovogo okeana. [Oil and gas emissions on land and offshore areas of the Arctic and World oceans]. Burenie i neft’, 2015, no. 6, ðð. 4—10. (In Russian). 3. Bogoyavlensky V. I., Bogoyavlensky I. V. Prirodnye i tekhnogennye ugrozy pri poiske, razvedke i razrabotke mestorozhdeniy uglevodorodov v Arktike. [Natural and technogenic threats in prospecting, exploration and development of hydrocarbon fields in the Arctic]. Miner. resursy Rossii. Ekonomika i upravlenie, 2018, no. 2, pp. 60—70. (In Russian). 4. Bogoyavlensky V. I., Sizov O. S., Mazharov A. V., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N., Kishankov A. V. Degazatsiya Zemli v Arktike: distantsionnye i ekspeditsionnye issledovaniya katastroficheskogo Seyakhinskogo vybrosa gaza na poluostrove Yamal. [Earth degassing in the Arctic: remote and field studies of the Seyakha catastrophic gas blowout on the Yamal Peninsula]. Arktika: ekologiya i ekonomika, 2019, no. 1 (33), pp. 88—105. DOI: 10.25283/2223-4594-2019-1-88-105. (In Russian). 5. Bogoyavlensky V. I., Bogoyavlensky I. V., Kargina T. N., Nikonov R. A., Sizov O. S. Degazatsiya Zemli v Arktike distantsionnye i ekspeditsionnye issledovaniya vybrosov gaza na termokarstovykh ozerakh. [Earth degassing in the Arctic: remote and field studies of gas blowouts on thermokarst lakes]. Arktika: ekologiya i ekonomika, 2019, no. 2 (34), pp. 31—47. DOI: 10.25283/2223-4594-2019-2-31-47. (In Russian). 6. BogoyavlenskyV. I., Sizov O. S., Bogoyavlensky I. V., Nikonov R. A., Kargina T. N. Degazatsiya Zemli v Arktike: kompleksnye issledovaniya rasprostraneniya bugrov pucheniya i termokarstovykh ozer s kraterami vybrosov gaza na poluostrove Yamal. [Earth Degassing in the Arctic: Comprehensive Studies of the Distribution of Frost Mounds and Thermokarst Lakes with Gas Blowout Craters on the Yamal Peninsula]. Arktika: ekologiya i ekonomika, 2019, no. 4 (36), ðp. 52—68. DOI: 10.25283/2223-4594-2019-4-52-68. (In Russian). 7. Bogoyavlensky V. I. Innovative Technologies and Results of Studying Processes of Natural and Man-Made Degassing of the Earth in the Lithosphere-Cryosphere-Hydrosphere-Atmosphere System. Third International Conference on Geology of the Caspian Sea and Adjacent Areas (Baku, 2019). 2019, 5 p. DOI: 10.3997/2214-4609.201952015. 8. Bogoyavlensky V. I., Urupov A. K., Budagova T. F., Dobrynin S. V. Anizotropnye svoystva osadochnogo chekhla kontinental’nogo shel’fa. [Anisotropic properties of continental shelf sedimentary mantle]. Gazovaya prom-st’, 1997, no. 7, ðð.16—18. (In Russian). 9. Bugaev À. S., Dmitriyevsky À. N., Erokhin G. N. Mikroseysmicheskiy monitoring v neftegazovoy otrasli. [Microseismic monitoring technologies in oil and gas industry]. Proceedings of international conference “Degassing of the Earth: geology and ecology 2018”. Aktualniye problemi nefti I gaza, 2018, no. 4 (23), DOI: 10.29222/ipng.2078-5712.2018-23.art76. (In Russian). 10. Erokhin G. N., Bugaev A. S., Bogoyavlenskiy I. V. Perspektivy kompleksirovaniya novogo metoda seysmorazvedki RTH I rezultatov passivnogo mikroseysmicheskogo monitoringa v reshenii zadach viyavleniya opasnikh obyektov vybrosov gaza v Arktike. [Prospects of the RTH seismic exploration method and the results of passive microseismic monitoring integration in solving problems of identifying hazardous gas emissions in the Arctic]. Bureniye i neft, 2019, no. 7—8, pp. 52—57. (In Russian). 11. Erokhin G. N., Bortnikov P. B. Inverse problem of determination of the earthquake source seismic moment tensor. Geology and Geophysics, 1987, 4, pp. 115—123. 12. Erokhin G. N., Maynagashev S. M., Bortnikov P. B., Kuzmenko A. P., Rodin S. V. Sposob kontrolya protsessa gidrorazryva plasta zalezhi uglevodorodov. Patent na izobretenie RUS 2319177 19.06.2006. [The method of hydrocarbon deposit fracking control. Invention patent RUS 2319177 19.06.2006]. (In Russian). 13. Erokhin G. N., Baranov V. D., Kremlev A. N., Smirnov I. I., Rodin S. V. Small microseismic surface acquisition system case study // 76th EAGE Conference and Exhibition, 2014, pp. 297—299, DOI: 10.3997/2214-4609.20140576. 14. Erokhin G., Kremlev A., Smirnov I., Rodin S., Baranov V. The optimal tight oil and shale gas development based on pre-existing fracture and principal stress models: Ñase study. SEG Technical Program Expanded Abstracts: 2014, pp. 2626—2630. Available at: https://doi.org/10.1190/segam2014-1037.1. 15. Gapeyev D. N., Erokhin G. N., Rodin S. V., Sedaykin S. D., Smirnov I. I. Noviye vozmozhnosti primeneniya passivnogo mikroseysmicheskogo monitoring dlya viyavleniya strukturno-tektonicheskikh osobennostey uchastkov neftegazovykh mwstorozhdeniy. [New possibilities of passive microseismic monitoring use for detecting the structural and tectonic peculiarities of oil and gas fields parts]. Vestn. Balt. feder. un-ta im. I. Kanta. Ser. Fiz.-mat. i tekhn. nauki, 2014, no. 4, pp. 113—120. (In Russian). 16. Gapeyev D. N., Erokhin G. N., Sedaykin S. D., Strokov V. I. Opyt primeneniya passivnogo mikroseysmicheskogo monitoringa dlya kontrolya zavodneniya na mestorozhdenii Severnaya Truva. [The case of passive microseismic monitoring use for water flooding control on the Severnaya Turva field]. Vestn. Balt. feder. un-ta im. I. Kanta. Ser. Fiz.-mat. i tekhn. nauki, 2015, no. 10, pp. 133—139. (In Russian). 17. Anokhina E., Zhegalina L., Erokhin G., Demidova E., Strokov V., Kozlov M. Possibilities of microseismic monitoring technology for control and optimization of hydrocarbon reservoir development the case of Eastern Kazakhstan oil fields. Society of Petroleum Engineers — SPE Russian Petroleum Technology Conference, 2017. 18. GorbatikovA. V., SobisevichA. L., OvsyuchenkoA. N. Razvitiye modeli glubinnogo stroyeniya Akhtyrskoy fleksurno-razryvnoy zony I gryazevogo vulcana Shugo. [Development of the model of the deep structure of Akhtyr flexure-fracture zone and Shugo mud volcano]. Dokl. Akad. nauk. Geofizika, 2008, vol. 421, no. 5, pp. 670—674. (In Russian). 19. Duncan P., Laking J. Microseismic Monitoring with a Surface Array: Passive Seismic: Exploration and Monitoring Applications. EAGE Annual Conference & Exhibition, Dubai. Extended abstract, 2006, A29. 20. Turlov P. A., Kuznetsov I. M. Sovremenniye beskabelniye telemetricheskiye seysmoregistriruyushchiye sistemy (obzor). [Modern no cable telemetric seismic registering systems (overwiew]. Pribory I sistemy razvedoch. geofiziki, 2014, no. 2, pp. 6—18. (In Russian). 21. Nikonov A. A. Krymskiye zemletryaseniya 1927 goda: neizvestniye yavleniya na more [Earthquakes in Crimea in 1927: unknown phenomena in the sea]. Priroda, 2002, no. 9, pp. 13—20. (In Russian). 22. Gavrilov V. P., Fedorovskiy Yu. F., Tronov Yu. A. et al. Geodinamika i neftegazonosnost Arktiki. [Geodinamics and oil and gas potential of the Arctic]. Pod red. V. P. Gavrilova. Moscow, Nedra, 1993, 323 p. (In Russian). 23. Kharakhinov V. V. Neftegazovaya geodinamika Zapadno-Sibirskogo osadochnogo megabasseyna. [Petroleum geodynamics of the West Siberian sedimentary megabasin]. Geologiya nefti i gaza, 2019, no. 2, ðð. 5—21. DOI: 10.31087/0016-7894-2019-2-5-21. (In Russian). Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|