Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » No. 3(23) 2016 » Remote identification of areas of surface gas and gas emissions in the Arctic: Yamal Peninsula

REMOTE IDENTIFICATION OF AREAS OF SURFACE GAS AND GAS EMISSIONS IN THE ARCTIC: YAMAL PENINSULA

JOURNAL: No. 3(23) 2016, p. 4-15

HEADING: Research activities in the Arctic

AUTHORS: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A., Sizov, O.S.

ORGANIZATIONS: Oil and Gas Research Institute of RAS, Gubkin Russian State University of Oil and Gas (National Research University), Russian Space Systems

UDC: 502:631.4(98), 550.834(26)

Keywords: gas blowout (emission), gas shows, degassing, remote sensing, satellite images, crater, Yamal peninsula

Bibliographic description: Bogoyavlensky, V.I., Bogoyavlensky, I.V., Nikonov, R.A., Sizov, O.S. Remote identification of areas of surface gas and gas emissions in the Arctic: Yamal Peninsula. Arctic: ecology and economy, 2016, no. 3(23), pp. 4-15. DOI: . (In Russian).


Abstract:

It is shown that the thermokarst lakes in the Northern Siberia are an active source of methane emissions to the atmosphere. The criteria to identify gas shows and gas emissions in the Arctic by example of Yamal lakes according to data of remote space sensing are developed. Search of surface gas should be based on a number of identified remote features which include: abnormal blue color of water, the craters at the bottom and gas seepage in water, the traces of gas clusters in seasonal ice cover, as well as an active coastal erosion and processes of permafrost heave near shore line. Identified features can be used for detailed mapping of gas in the high latitudes to a high degree of reliability.


Finance info: Ðàáîòà âûïîëíåíà ïðè ÷àñòè÷íîé ôèíàíñîâîé ïîääåðæêå Ðîññèéñêîãî ôîíäà ôóíäàìåíòàëüíûõ èññëåäîâàíèé è Ïðàâèòåëüñòâà ßÍÀÎ (ñîâìåñòíûé ãðàíò 16-45-890247)

References:

1. Bogoyavlenskiy V. I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala i Taymyra. [The threat of catastrophic gas emissions from the Arctic cryolithozone. Funnels of Yamal and Taimyr.]/ Part. 1. Bureniye i neft, 2014, no.9, ðð. 13—18. (In Russian).

2. Bogoyavlenskiy V. I. Ugroza katastroficheskikh vybrosov gaza iz kriolitozony Arktiki. Voronki Yamala i Taymyra. [The threat of catastrophic gas emissions from the Arctic cryolithozone. Funnels of Yamal and Taimyr.], Part. 2, Bureniye i neft, 2014, no. 10, ðð. 4—8. (In Russian).

3. Bogoyavlenskiy V. I. Chrezvychaynyye situatsii pri osvoyenii resursov nefti i gaza v Arktike i Mirovom okeane. [Emergency situations in the development of oil and gas resources in the Arctic and the World Ocean]. Arktika: ekologiya. ekonomika, 2014, no. 4 (16), ðð. 48—59. (In Russian).

4. Bogoyavlenskiy V. I. Arktika i Mirovoy okean: sovremennoye sostoyaniye. perspektivy i problemy osvoyeniya resursov uglevodorodov. [The Arctic and the World Ocean: current state, prospects and problems of hydrocarbon resources development]. Moscow, VEO, Tr. Volnogo ekon. o-va., 2014, Vol. 182, ðð. 11—175. (In Russian).

5. Bogoyavlenskiy V. I. Vybrosy gaza i nefti na sushe i akvatoriyakh Arktiki i Mirovogo okeana. [Emissions of gas and oil on land and in the waters of the Arctic and the World Ocean]. Bureniye i neft, 2015, no. , ðð. 4—10. (In Russian).

6. Bogoyavlenskiy V. I., Mazharov A. V., Pushkarev V. A., Bogoyavlenskiy I. V. Vybrosy gaza iz kriolitozony poluostrova Yamal. Predvaritelnyye rezultaty ekspeditsii 8 iyulya 2015 g. [Gas emissions from the Yamal Peninsula permafrost zone. The preliminary results of the expedition July 8, 2015]. Bureniye i neft, 2015, no. 7—8, ðð. 8—13. (In Russian).

7. Bondur V. G., Kuznetsova T. V. Vyyavleniye gazovykh sipov v akvatoriyakh arkticheskikh morey s ispolzovaniyem dannykh distantsionnogo zondirovaniya. [Detection of gas seeps in the waters of the Arctic seas using remote sensing data]. Issledovaniye Zemli iz kosmosa, 2015, no. 4, ðð. 30—43. (In Russian).

8. Bryksina N. A., Polishchuk Yu. M. Issledovaniye tochnosti distantsionnogo izmereniya ploshchadey ozer s ispolzovaniyem kosmicheskikh snimkov. [Investigation of the accuracy of remote measurement of lake areas using satellite imagery]. Geoinformatika, 2013, no. 1, ðð. 64—68. (In Russian).

9. Budantseva N. A. Gazoproyavleniya v merzlykh porodakh // Kriosfera neftegazokodensatnykh mestorozhdeniy poluostrova Yamal. — T. 1: Kriosfera Kharasaveyskogo gazokondensatnogo mestorozhdeniya. [Gas shows in frozen rocks // The cryosphere of oil and gas condensate fields of the Yamal Peninsula. - Vîl. 1: The cryosphere of the Kharasavey gas condensate field]. Tyumen, St. Petersburg, Nedra, 2006, ðð. 235—248. (In Russian).

10. Vereshchaka T. V., Zverev A. T., Sladkopevtsev S. A., Sudakova S. S. Vizualnyye metody deshifrirovaniya. [Visual interpretation methods], Moscow, Nedra, 1990, ð. 344. (In Russian).

11. Labutina I. A. Deshifrirovaniye aerokosmicheskikh snimkov. [Aerospace Image Decoding]. Moscow, Aspekt press, 2004, ð.184. (In Russian).

12. Gafarov N. A., Baranov Yu. B., Vanyarkho M. A. et.al. Ispolzovaniye kosmicheskoy informatsii v gazovoy promyshlennosti. [Use of space information in the gas industry]. Moscow, OOO «Gazprom ekspo», 2010, ð.132. (In Russian).

13. Dvornikov Yu. A. Protsessy termodenudatsii v kriolitozone i ikh indikatsiya po rastvorennomu organicheskomu veshchestvu. [The processes of thermodenudation in the cryolithozone and their indication by dissolved organic matter]. Dis. ... kand. geol.-mineral. nauk, Tyumen, 2016, ð.177. Available at: http://www.ikz.ru/wp-content/themes/ikz/images/dvornikov-full.pdf. (In Russian).

14. Kiselev A. A., Reshetnikov A. I. Metan v Rossiyskoy Arktike: rezultaty nablyudeniy i raschetov. [Methane in the Russian Arctic: Observations and Calculations]. Problemy Arktiki i Antarktiki, 2013, no. 2 (96), ðð. 5—15. (In Russian).

15. Kritsuk L. N. Podzemnyye ldy Zapadnoy Sibiri. [Underground ice of Western Siberia]. Moscow, Nauch. mir, 2010, ð.352. (In Russian).

16. Kuzin I. L. Razvitiye predstavleniy o noveyshey tektonike i eye vliyanii na formirovaniye i razmeshcheniye mestorozhdeniy nefti i gaza. [The development of ideas about the latest tectonics and its impact on the formation and location of oil and gas fields]. Tr. ZapSibNIGNI, Tyumen, 1973, Issue 73, ðð. 6—20. (In Russian).

17. Kuzin I. L., Lyubina Yu. N., Reynin I. V. Gazoproyavleniya na ozerakh Zapadnoy Sibiri i ikh svyaz s mestorozhdeniyami nefti i gaza // Tektonicheskiye kriterii vydeleniya i prognoza zon neftegazonosnosti (s ispolzovaniyem kosmicheskoy informatsii). [Gas shows on the lakes of Western Siberia and their relationship with oil and gas fields // Tectonic criteria for the separation and prediction of oil and gas zones (using space information)]. Leningrad, VNIGRI, 1990, ðð. 117—127. (In Russian).

18. Kuzin I. L. O prirode anomalnykh ozer — pokazateley skopleniy uglevodorodov v glubokikh gorizontakh osadochnogo chekhla // Problemy otsenki novykh zon neftegazonakopleniya v osnovnykh produktivnykh tolshchakh Zapadnoy Sibiri. [On the nature of anomalous lakes — indicators of hydrocarbon accumulations in the deep horizons of the sedimentary cover // Problems of estimating new zones of oil and gas accumulation in the main productive strata of Western Siberia]. St. Petersburg, VNIGRI, 1992, ðð. 129—137. (In Russian).

19. Kuzin I. L. Golubyye ozera oblastey gumidnogo klimata. [Blue Lakes Humid Climate Areas]. Izv. Rus. geogr. o-va, 2001, Vol. 133, Issue. 3, ðð. 44—57. (In Russian).

20. Labutina I. A. Deshifrirovaniye aerokosmicheskikh snimkov. [Aerospace Image Decoding]. Moscow, Aspekt press, 2004, ð.184. (In Russian).

21. Laverov N. P., Bogoyavlenskiy V. I., Bogoyavlenskiy I. V. Fundamentalnyye aspekty ratsionalnogo osvoyeniya resursov nefti i gaza Arktiki i shelfa Rossii: strategiya. perspektivy i problem. [Fundamental aspects of the rational development of oil and gas resources in the Arctic and the Russian shelf: strategy, prospects and problems]. Arktika: ekologiya i ekonomika, 2016, no. 2 (22), ðð. 4—13. (In Russian).

22. Masurenkov Yu. P.. Slezin Yu. B.. Sobisevich A. L. Gazovyye shleyfy u ostrova Bennetta. [Gas plumes off Bennett Island]. Izv. RAN. Ser. geogr., 2013, no. 3, ðð. 86—95. (In Russian).

23. Melnikov V. P., Spesivtsev V. I., Kulikov V. N. O struynoy degazatsii uglevodorodov kak istochnike novoobrazovaniy lda na shelfe Pechorskogo morya // Itogi fundamentalnykh issledovaniy kriosfery Zemli v Arktike i Subarktike. [On jet degassing of hydrocarbons as a source of ice neoplasms on the shelf of the Pechora Sea // Results of the fundamental studies of the Earth’s cryosphere in the Arctic and Subarctic]. Materialy mezhdunarodnoy konferentsii. Novosibirsk, Nauka, 1997, ðð. 259—269. (In Russian).

24. Protasyeva I. V. Aerometody v geokriologii. [Aero methods in geocryology]. Moscow, Nauka, 1967, ðð.196. (In Russian).

25. Rivkin F. M. Metan v merzlykh porodakh i prognoz ego vydeleniya pri poteplenii klimata i tekhnogennykh narusheniyakh poverkhnosti. [Methane in frozen rocks and the forecast of its release during climate warming and man-made surface disturbances]. Izv. RAN. Ser. geogr., 1998, no. 2, ðð. 64—75. (In Russian).

26. Rivkin F. M. Gazosoderzhaniye v verkhnikh gorizontakh merzlykh porod // Geokriologicheskiye usloviya Kharasaveyskogo i Kruzenshternovskogo gazokondensatnykh mestorozhdeniy (poluostrov Yamal). [Gas content in the upper horizons of frozen rocks // Geocryological conditions of the Kharasavey and Kruzenshternovsky gas condensate fields (Yamal Peninsula)]. Moscow, GEOS, 2003, ðð. 133—146. (In Russian).

27. Sizov O. S. Distantsionnyy analiz posledstviy poverkhnostnykh gazoproyavleniy na severe Zapadnoy Sibiri. [Remote analysis of the effects of surface gas manifestations in the north of Western Siberia]. Geomatika, 2015, no. 1, ðð. 53—68. (In Russian).

28. Shakhova N. E.. Sergiyenko V. I.. Semiletov I. P. Vklad Vostochno-Sibirskogo shelfa v sovremennyy tsikl metana. [The contribution of the East Siberian Shelf to the modern methane cycle]. Vestn. RAN, 2009, Vol. 79, ðð. 507—518. (In Russian).

29. Yakushev V. S. Prirodnyy gaz i gazovyye gidraty v kriolitozone. [Natural gas and gas hydrates in the cryolithozone], Moscow,VNIIGAZ, 2009, ð.192 . (In Russian).

30. Bogoyavlensky V. Gas Blowouts on the Yamal and Gydan Peninsulas // GeoExPro [London]. — 2015. — Vol. 12, ¹ 5. — Oct. — P. 74—78.

31. Engram M., Walter K. M., Meyer F. J., Grosse G. Synthetic aperture radar (SAR) backscatter response from methane ebullition bubbles trapped by thermokarst lake ice // Canadian J. of Remote Sensing. — 2013. — Vol. 38, ¹ 6. — Ð. 667—682. — doi:10.5589/m12-054.

32. Fitzgerald D., Riordan B. A. Permafrost and ponds. Remote sensing and GIS used to monitor Alaska wetlands at the landscape level // Agroborealis. — 2003. — Vol. 35, ¹ 1. — Ð. 30—35.

33. Hormann C. Interpolating elevation data grids from contour lines // http://www.imagico.de/pov/earth_interpolate.php.

34. Judd A., Hovland M. Seabed Fluid Flow. The Impact on Geology, Biology, and the Marine Environment. — Cambridge, 2007. — 475 ð.

35. Kienle J., Roederer J. G., Shaw G. E. Volcanic event in Soviet Arctic // EOS. — 1983. — Vol. 64, ¹ 20. — P. 377.

36. Lindgren P. R., Grosse G., Walter Anthony K. M., Meyer F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using highresolution optical aerial imagery // Biogeosciences. — 2016. — 13 (1). — Ð. 27—44. — doi:10.5194/bg-13-27-2016.

37. Martinez-Cruz K., Sepulveda-Jauregui A., Walter Anthony K., Thalasso F. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes // Biogeosciences. — 12. — Ð. 4595— 4606. — doi:10.5194/bg-12-4595-2015, 2015.

38. O’Connor T. Infrared Camera Reveals Huge, Waſting Cloud of Methane over California’s Aliso Canyon // Bio. — 2015. — Dec. 10.

39. Paltan H., Dash J., Edwards M. A refined mapping of Arctic lakes using Landsat imagery // Int. J. Remote Sens. — 2015. — 36. — Ð. 5970—5982. — doi:10.1080/01431161.2015.1110263.

40. Portnov A., Smith A. J., Mienert J. et al. Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf // Geoph. Res. Let. — 2013. — Vol. 40. — Ð. 1—6. — doi:10.1002/grl.50735.

41. Reusch A., Loher M., Bouff ard D. et al. Giant lacustrine pockmarks with subaqueous groundwater discharge and subsurface sediment mobilization // Geoph. Res. Let. — 2015. — 13 May. — doi:10.1002/2015GL064179.

42. Smith L. C., Sheng Y., MacDonald G. M., Hinzman L. D. Disappearing Arctic lakes // Science. — 2005. — 308. — Ð. 1429. — doi:10.1126/science.1108142.

43. Walter K. M., Engram M., Duguay C. R. et al. The potential use of synthetic aperture radar for estimating methane ebullition from Arctic lake // J. Am. Water Resour. As. — 2008. — 44. — Ð. 305—315.

44. Walter K. M., Chanton J. P., Chapin F. S. et al. Methane production and bubble emissions from Arctic lakes: Isotopic implications for source pathways and ages // J. Geophys. Res. — 2008. — Vol. 113. — G00A08.

45. Walter Anthony K. M., Vas D. A., Brosius L. et al. Estimating methane emissions from northern lakes using ice bubble surveys // Limnology and Oceanography: Methods. — 2010. — Vol. 8, ¹ NOV. — P. 592—609.

46. Walter Anthony K. M., Anthony P., Grosse G., Chanton J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers // Nature Geoscience. — 2012. — Vol. 5. — Ð. 419—426.

47. Wooller M. J., Pohlman J. W., Gaglioti B. V. et al. Reconstruction of past methane availability in an Arctic Alaska wet-land indicates climate influenced methane release during the past ~12,000 years // J. of Paleolimnology. — 2012. — 48. — P. 27—42. — doi:10.1007/s10933-012-9591-8.

48. Zimov S. A., Voropaev Y. V., Semiletov I. P. et al. North Siberian lakes: a methane source fueled by Pleistocene carbon // Science. — 1997. — Vol. 277. — Ð. 800—802.


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594