Home » Archive of journals » No. 1(25) 2017 » Arctic Marine Transport System Simulation: Multidisciplinary Approach Fundamentals and Practical Experience
ARCTIC MARINE TRANSPORT SYSTEM SIMULATION: MULTIDISCIPLINARY APPROACH FUNDAMENTALS AND PRACTICAL EXPERIENCE
Bibliographic description:Tarovik, O.V., Topaj, A.G., Krestyantsev, A.B., Kondratenko, A.A. Arctic Marine Transport System Simulation: Multidisciplinary Approach Fundamentals and Practical Experience. Arctic: ecology and economy, 2017, no. 1(25), pp. 86-101. DOI: 10.25283/2223-4594-2017-1-86-101. (In Russian).
Abstract:
Development of new offshore projects in the Arctic begins with comprehensive analysis of Marine Transport System’s (MTS) performance. At the same time researchers with different professional orientation (shipbuilders, logisticians, economists and managers etc.) are often have narrow view while making their investigations of MTS, focusing mostly at corresponding familiar sides of the system. It leads to specific “disproportional” description of MTS’s when some components considered in detail but other are out of investigation that in some cases may result in inaccurate conclusions. This makes authors sure that the only proper approach to investigate complex arctic MTS should be multidisciplinary. Article contains the description of integrated R&D project fulfilled at State Krylov Research Centre and devoted to realization of multidisciplinary methodology and corresponding software for arctic MTS design and analysis. Integrated software solution is based on object-oriented paradigm and combines such scientific areas as geographic information systems (GIS), shipbuilding disciplines, discrete event and agent-based simulation models. Theoretical base of the solution and its architecture envelops the following subject fields: ship design and fleet sizing, resistance and propulsion of ships including ice-going capabilities, vessel routing in ice, scheduling, downstream and upstream logistics, navigation process simulation, environment conditions stochastic modeling, operation research, queue theory, economy and management. Software has a modular structure with open and expansible architecture, which makes possible to add new functionality and upgrade existing program blocks in accordance with demands of specific project. Simulation model serve as the center of multidisciplinary integration because this technology allows reproducing behavior of different objects of MTS under dynamic conditions. Realized in AnyLogic ® framework simulation model replicates vessel operation process according to individual schedule generated by special planning component. Vessel’s activities simulated in modeled time with consideration of special aspects of operational planning and resolving accidents. Main model also includes specialized sub-models that provide opportunity to describe many local dynamic essences such as processes of offshore drilling and production, freeze-up of channel in fast ice, different ship interaction aspects, “weather windows” in ports etc. Number of instances are also given in the article, they allows to conclude that adequate and consistent model of MTS working in heavy ice-conditions or having complex organization scheme could be obtained only by means of simulation modeling under multidiscipline approach.
References:
1. Bakharev A. A., Kosorotov A. V., Krestiantsev A. B. et al. Povysheniye effektivnosti raboty sistem vodnogo transporta s pomoshchyu dinamicheskogo imitatsionnogo modelirovaniya. [Increasing operational efficiency of operation of waterborne transport systems through dynamic simulation modelling]. Transport Ros. Federatsii, 2015, no 4 (59), pp 33—36. (In Russian). 2. Bakharev A. A., Kosorotov A. V., Krestiantsev A. B. et al. Ierarkhiya urovney prinyatiya resheniy v imitatsionnom modelirovanii morskikh perevozok. [Decision making hierarchy in simulation modeling of marine transportation]. Sedmaya vserossiyskaya nauchno-prakticheskaya konferentsiya “Imitatsionnoye modelirovaniye. Teoriya i praktika” IMMOD-2015: Trudy konf., T. 1. Moscow: IPU RAN, 2015, pp 34—39. (In Russian). 3. Borshchev A. V. Prakticheskoye agentnoye modelirovaniye i ego mesto v arsenale analitika. [Practical agent-based modeling and its place in analytics toolkit]. Exponenta PRO, 2004, no 3—4 (7—8), pp 38—47. (In Russian). 4. Volkov V. V., Norov A. T., Meshkov S. A. Kontseptsiya obyektno-oriyentirovannogo podkhoda k avtomatizatsii issledovatelskogo proyektirovaniya. [Concept of object-oriented approach towards automation of research design]. Programmnyye produkty i sistemy, 1996, no 1, pp 19—23. (In Russian). 5. Gaykovich A. I. Teoriya proyektirovaniya vodoizmeshchayushchikh korabley i sudov: V 2 t, T. 1: Opisaniye sistemy “Korabl”. [Design theory for displacement ships and vessels, vol. 1. Description of Ship as System (in Russian)] SPb.: Izd-vo NITs MORINTEKh, 2014, 819 p. (In Russian). 6. Grigoryev M. Monitoring razvitiya investitsionnykh proyektov po osvoyeniyu uglevodorodov arkticheskogo shelfa. [Monitoring of investment projects on Arctic offshore hydrocarbons]. Materialy 14-go peterburgskogo mezhdunarodnogo energeticheskogo foruma. SPb., 2014, pp 17. (In Russian). 7. Dekhtyaruk Yu. D., Dobrodeyev A. A., Sazonov K. E. Nekotoryye voprosy sozdaniya morskikh transportnykh sistem dlya vyvoza uglevodorodov iz Arktiki/ [Some questions on the establishment of marine transport systems for the removal of hydrocarbons from the Arctic]. Arktika: ekologiya i ekonomika, 2013, no 2 (10), pp. 84—91. (In Russian). 8. Dekhtyaruk Yu. D. Analiz investitsionnykh zatrat na obustroystvo morskikh mestorozhdeniy uglevodorodov v Arktike. [Analysis of investment expenses on construction of offshore hydrocarbon field facilities in Arctic]. Tr. TsNII im. akad. A. N. Krylova, 2008, Vyp. 38 (322), pp 133—139. (In Russian). 9. Zimin A. D., Deryabina L. S. Postanovka i osobennosti resheniya zadachi optimizatsii parametrov ledokolno-transportnogo kompleksa. [Icebreaker/transport system optimization problem: statement and solution specifics]. Vopr. sudostroyeniya. Ser. 1: Proyektirovaniye sudov, 1985, no 44, pp. 31—40. (In Russian). 10. Kartashev A. B. Tipovaya ekonomicheskaya model obustroystva i promyshlennoy ekspluatatsii morskikh neftyanykh mestorozhdeniy. [Standard economic model for construction and commercial development of offshore oil fields]. Tr. TsNII im. akad. A. N. Krylova, 2008, Vyp. 38 (322), pp 140—148. (In Russian). 11. Kondratenko A. A., Tarovik O. V. Sravnitel’nyy analiz sushchestvuyushchikh metodov opredeleniya funktsional’nogo i kolichestvennogo sostava flota sudov obespecheniya. [Comparative analysis of existing methods for defining the functional and numerical strength of support fleet]. Tr. Krylov. gos. nauch. tsentra, 2016, Vyp. 94 (378). pp 201—214. 12. Krestiantsev A. B., Lutskevich A. M., Tarovik O. V. Morskiye perevozki SPG: sovremennoye sostoyaniye i puti optimizatsii transportnykh system. [Marine LNG transportation: actual condition and ways of optimization]. Neftegas.ru, 2015, no 5, pp 32—37. (In Russian). 13. Malykhanov A. A., Chernenko V. E. Imitatsionnoye modelirovaniye logistiki snabzheniya arkticheskikh burovykh platform. [Simulation modeling of logistic chain for Arctic drilling platforms]. Sedmaya vserossiyskaya nauchno-prakticheskaya konferentsiya “Imitatsionnoye modelirovaniye. Teoriya i praktika” IMMOD-2015: Trudy konf, T. 2. M.: IPU RAN, 2015, pp 210—221. (In Russian). 14. Pashin V. M. Optimizatsiya sudov. [Ship optimization]. L.: Sudostroyeniye, 1983. 296 p. (In Russian). 15. Sazonov K. E. Vliyaniye smerzayemosti ledyanogo kanala v pripaynom ldu na ledovuyu khodkost sudna. [Effect of the freezing channel in the fast ice upon propulsion performance of ship in ice conditions]. Tr. Krylov. gos. nauch. tsentra, 2015, Vyp. 88 (372), pp 159—166. (In Russian). 16. Smirnov V. G., Mironov E. U. Ledovo-informatsionnoye obespecheniye morskoy transportnoy sistemy s ispolzovaniyem sovremennykh tekhnologiy predstavleniya gidrometeorologicheskoy informatsii konechnomu polzovatelyu. [Ice information support to marine transport system using modern technologies for delivery of hydrometeorological information to the end user]. Tr. konf. RAO / CIS Offshore 2009, T. 2. SPb., 2009. pp 149—153. (In Russian). 17. Tarovik O. V., Bakharev A. A., Topaj A. G. et al. Imitatsionnaya model raboty flota kak instrument analiza ekspluatatsionnykh parametrov sudov i obosnovaniya proyektnykh resheniy. [Simulation model of fleet operation as a tool of ship service parameters analysis and marine transportation system design] Nauch.-tekhn. sb. Ros. mor. registra sudokhodstva, 2015, no 38/39, pp 46—52. (In Russian). 18. Tarovik O. V., Kosmin M. S. Imitatsionnoye modelirovaniye morskikh transportnykh sistem. rabotayushchikh v ledovykh usloviyakh s soblyudeniyem grafika postavok. [Simulation modelling of marine transport systems operating in ice conditions in compliance with the deliveries schedule]. Sudostroyeniye, 2014, no 1, pp 9—14. (In Russian). 19. Fadeyev A. M., Cherepovitsyn A. E., Larichkin F. D., Egorov O. I. Ekonomicheskiye osobennosti realizatsii proyektov po osvoyeniyu uglevodorodnykh mestorozhdeniy shelfa. [Economic features of projects on the hydrocarbon shelf deposits development]. Ekon. i sotsial. peremeny: fakty. tendentsii. prognoz, 2010, no 3 (11), pp 61—74. (In Russian). 20. Fauler M. UML. Osnovy. [UML Distilled]. 3-e izd.: Per. s angl. SPb.: Simvol-Plyus, 2004. 192 p. (In Russian). 21. Shtrek A. A., Buyanov A. S. Tekhniko-ekonomicheskoye obosnovaniye optimalnykh parametrov arkticheskogo konteynerovoza dlya tranzitnykh perevozok po Severnomu morskomu puti. [Feasibility study of Arctic containership optimal parameters for transit navigation along the Northern Sea Route]. Nauch.-tekhn. sb. Ros. mor. registra sudokhodstva. SPb., 2016, pp 23—30. (In Russian). 22. Aas B., Gribkovskaia I., Halskau O., Shlopak A. Routing of supply vessels to petroleum installations, International Journal of Physical Distribution & Logistics Management, 2007, vol. 37, no 2, pp 164—179. 23. Andersson H., Christiansen M., Fagerholt K. Transportation planning and inventory management in the LNG supply chain. In: Bjørndal E., Bjørndal M., Pardalos P. M., Rönnqvist M. Energy, Natural Resources and Environmental Economics. Springer, 2010, pp 427—439. 24. Choi M., Chung H., Yamaguchi H., Nagakawa K. Arctic sea route path planning based on an uncertain ice prediction model. Cold Regions Science & Technology, 2015, no 109, pp 61—69. 25. Gaspar H. M., Ross F. M., Rhodes D. H., Erikstad S. O. Handling Complexity Aspects in Conceptual Ship Design. Proceedings of 11th International Maritime Design Conference (IMDC-2012). Glasgow, UK, June 2012. 26. Iyerusalimskiy A., Davis G.D., Suvorov A. et al. Arctic Crude Oil Transportation System Development. Proceedings of International Offshore and Polar Engineering Conference (ISOPE). Lisbon, Portugal, 1—6 July 2007. 27. Kotovirta V., Jalonen R., Axell L. et al. A system for route optimization in ice-covered waters. Cold Regions Science & Technology, 2009, no 55 (1), pp 52—62. 28. Maisiuk I., Gribkovskaia I. Fleet Sizing for Offshore Supply Vessels with Stochastic Sailing and Service Times. Proceedings of 2nd International Conference on Information Technology and Quantitative Management (ITQM-2014). Moscow, Russia, 3—5 June 2014. 29. Redda Y., El-Abed A., Regterschot J., Scholten W. LNG Supply Chain Design and Optimization at Qatargas. Proceedings of 25th World Gas Conference (WGC 2012), Kuala Lumpur, Malaysia, 4—8 June 2012. 30. Riska K., Breivik K., Eide S.I., Gudmestad O. Factors Influencing the Development of Routes for Regular Oil Transport from Dikson. Proceedings ICETECH’06, Banff, Canada, 16—19 July 2006. 31. Solomenikov A. Simulation Modelling and Research of Marine Container Terminal Logistics Chains: Case study of Baltic Container Terminal. Doctoral thesis, Transport and Telecommunication Institute of Riga, 2006.