| ||||
| ||||
Home » Archive of journals » Volume 13, No. 2, 2023 » Dangerous gas-saturated objects in the World Ocean: the Beaufort Sea, Alaska North Slope shelf DANGEROUS GAS-SATURATED OBJECTS IN THE WORLD OCEAN: THE BEAUFORT SEA, ALASKA NORTH SLOPE SHELFJOURNAL: Volume 13, No. 2, 2023, p. 201-210HEADING: Research activities in the Arctic AUTHORS: Bogoyavlensky, V.I., Kishankov, A.V. ORGANIZATIONS: Oil and Gas Research Institute of RAS DOI: 10.25283/2223-4594-2023-2-201-210 UDC: 553.981.2 The article was received on: 17.02.2023 Keywords: gas hydrates, craters of gas blowout, World Ocean, Beaufort sea, mud volcano, Chukchi Sea, CDP seismic, near-surface section, gas deposits, gas pockets, Alaska North Slope Bibliographic description: Bogoyavlensky, V.I., Kishankov, A.V. Dangerous gas-saturated objects in the World Ocean: the Beaufort Sea, Alaska North Slope shelf. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2023, vol. 13, no. 2, pp. 201-210. DOI: 10.25283/2223-4594-2023-2-201-210. (In Russian). Abstract: The article is devoted to the study of gas saturation of the upper part of the sedimentary cover in the western sector of the Beaufort Sea adjacent to Alaska. For the first time, the interpretation of the upper part of the seismic sections of CDP (common depth point) seismic survey was performed for 52 seismic lines of the United States Geological Survey (USGS) with a total length of 4050 km. 184 anomalous objects were found in near-bottom sediments, potentially associated with shallow gas accumulations (gas pockets). The average distance between these objects along the seismic lines was 22 km, which is 80% more than in the Chukchi Sea. This is apparently due to less tectonic activity in the Beaufort Sea. The statistically established similarity of anomalous objects in these seas in terms of depths and lengths is due to similar geological conditions for the formation of sedimentary deposits. In addition, 60 seismic lines with a total length of 4390 km show a wide distribution of potential gas hydrate deposits on the continental slope of the Beaufort Sea, which is consistent with the earlier conclusions of the US and Norwegian scientists (K. Andreassen, P. E. Hart, A. Grantz and others). Finance info: The research was carried out according to the state assignment of the Oil and Gas Research Institute, Russian Academy of Sciences on the topic “Improving the efficiency and environmental safety of the oil and gas resources development in the Arctic and Subarctic zones of the Earth in a changing climate” (No. 122022800264-9). The authors are grateful to the United States Geological Survey (USGS) for the opportunity to use 2D CDP seismic data for the western area of the Beaufort Sea. References: 1. Anisimov O. A., Zimov S. A., Volodin E. M., Lavrov S. A. Methane Emission in the Russian Permafrost Zone and Evaluation of Its Impact on Global Climate. Russian Meteorology and Hydrology, 2020, vol. 45, pp. 377—385. 2. James R. H., Bousquet P., Bussmann I., Haeckel M., Kipfer R., Leifer I. et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnology and Oceanography, 2016, vol. 61 (S1), pp. S283—S299. DOI: 10.1002/lno.10307. 3. Etiope G., Ciotoli G., Schwietzke S., Schoell M. Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 2019, vol. 11 (1), pp. 1—22. Available at: https://doi.org/10.5194/essd-11-1-2019. 4. Saunois M., Stavert A. R., Poulter B., Bousquet P., Canadell J. G., Jackson R. B., Raymond P. A. et al. The Global Methane Budget 2000—2017. Earth Syst. Sci. Data, 2020, vol. 12, pp. 1561—1623. Available at: https://doi.org/10.5194/essd-12-1561-2020. 5. Dlugokencky Ed. Global CH4 Monthly Means. NOAA/GML, 2022. Available at: gml.noaa.gov/ccgg/trends_ch4/. 6. Sergienko V. I., Lobkovsky L. I., Semiletov I. P. et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the “Methane Catastrophe”: some results of integrated studies in 2011. Doklady Earth Sciences, 2012, vol. 446 (1), pp. 1132—1137. 7. Shakirov R. B. Gasgeochemical fields of the Eastern Asia marginal seas. — Moscow, GEOS Publ., 2018. — 341 p. (In Russian). 8. Andreassen K., Hubbard A., Winsborrow M. et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science, 2017, vol. 356, iss. 6341, pp. 948—953. DOI: 10.1126/science.aal450. 9. Baranov B., Galkin S., Vedenin A., Dozorova K., Gebruk A., Flint M. Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. Geo-Marine Letters, 2020, vol. 40, pр. 541—557. DOI: 10.1007/s00367-020-00655-7. 10. Ginsburg G. D., Milkov A. V., Soloviev V. A., Egorov A. V. et al. Gas hydrate accumulation at the Håkon Mosby Mud Volcano. Geo-Mar. Lett., 1999, no. 19, pp. 57—67. 11. Judd A., Hovland M. Seabed Fluid Flow. The Impact on Geology, Biology, and the Marine Environment. Cambridge, Univ. Press, 2007, 493 p. 12. Kvenvolden K. A. Methane hydrates and global climate. Glob. Biogeochem. Cycles, 1988, vol. 2, pp. 221—229. 13. Paull C. K., Dallimore S. R., Caress D. W. et al. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. AGU — Geochemistry, Geophysics, Geosystems, 2015, vol. 16 (9), pp. 3160—3181. DOI: 10.1002/2015GC005928. 14. Bogoyavlensky V. I. Natural and technogenic threats in fossil fuels production in the Earth cryolithosphere. Gornaya promyshlennost’/Russian Mining Industry, 2020, no. 1 (149), pp. 97—118. DOI: 10.30686/1609-9192-2020-1-97-118. (In Russian). 15. Bogoyavlensky V. I. Fundamental aspects of the catastrophic gas blowout genesis and the formation of giant craters in the Arctic. Arctic: Ecology and Economy, 2021, vol. 11, no. 1, pp. 51—66. DOI: 10.25283/2223-4594-2021-1-51-66. (In Russian). 16. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kargina T., Chuvilin E., Bukhanov B., Umnikov A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences, 2021, vol. 11 (2), 71, pp. 1—20. Available at: https://doi.org/10.3390/geosciences11020071. 17. Bogoyavlensky V. I., Kerimov V. Y., Olkhovskaya O. O. Dangerous gas-saturated objects in the world ocean: the Sea of Okhotsk. Neftyanoe khozyaistvo, 2016, no. 6, pp. 43—47. (In Russian). 18. Богоявленский В. И., Казанин Г. С., Кишанков А. В. Опасные газонасыщенные объекты на акваториях Мирового океана: море Лаптевых // Бурение и нефть. — 2018. — № 5. — С. 20—28. Bogoyavlensky V. I., Kazanin G. S., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Laptev Sea. Drilling and oil, 2018, no. 5, рр. 20—28. (In Russian). 19. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Bering Sea. Drilling and oil, 2018, no. 9, рр. 4—12. (In Russian). 20. Bogoyavlensky V. I., Kishankov A. V. Dangerous gas-saturated objects in the World Ocean: the Chukchi Sea (Russia and the USA). Arctic: Ecology and Economy, 2020, no. 2 (38), рр. 45—58. (In Russian). 21. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G. Permafrost, Gas Hydrates and Gas Seeps in the Central Part of the Laptev Sea. Doklady Earth Sciences, 2021, vol. 500, pp. 766—771. DOI: 10.1134/S1028334X2109004X. 22. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G. Heterogeneities in the Upper Part of the Section of the Sedimentary Cover of the East Siberian Sea: Gas Accumulations and Signs of Ice Gouging. Doklady Earth Sciences, 2022, vol. 505, no. 1, pp. 411—415. DOI: 10.1134/S1028334X22070042. 23. Bogoyavlensky V. I., Kishankov A. V., Kazanin A. G., Kazanin G. A. Dangerous gas-saturated objects in the World Ocean: the East Siberian Sea. Arctic: Ecology and Economy, 2022, vol. 12, no. 2, pp. 157—171. DOI: 10.25283/2223-4594-2022-2-158-171. (In Russian). 24. Encyclopaedia Britannica. Available at: https://www.britannica.com/. 25. Grantz A., Dinter D. A., Hill E. R., May S. D., McMullin R. H., Phillips R. L., Reimnitz E. Geologic framework, hydrocarbon potential, and environmental conditions for exploration and development of proposed oil and gas lease sale 87 in Beaufort and northeast Chukchi Seas; a summary report (No. 82-482). US Geological Survey, 1982. 26. Grantz A., May S. D., Hart P. E. Geology of the Arctic continental margin of Alaska. The Geology of North America, 1990, vol. 50, pp. 257—288. 27. Grantz A., Hart P. E., Childers V. A. Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. Geological Society, London. Memoirs, 2011, vol. 35, no. 1, pp. 771—799. 28. Houseknecht D. W., Bird K. J. Oil and gas resources of the Arctic Alaska petroleum province. U.S. Geological Survey Professional Paper 1732-A, 2006, pp. 1—11. Available at: http://pubs.usgs.gov/pp/pp1732a/. 29. Haimila N. E., Kirschner C. E., Nassichuk W. W., Ulmishek G., Procter R. M. Sedimentary basins and petroleum resource potential of the Arctic Ocean region. The Arctic Ocean Region, Chap. 27, 1990, vol. 50, pp. 503—538. 30. Laverov N. P., Bogoyavlensky V. I., Bogoyavlensky I. V. Seismic exploration and development of offshore oil and gas fields in the Arctic of the Western Hemisphere. Arctic: Ecology and Economy, 2011, no. 3, pp. 16—27. Available at: http://arctica-ac.ru/article/418/. (In Russian). 31. Bogoyavlensky V. I., Polyakova I. D., Budagova T. A., Bogoyavlensky I. V., Danilina A. N. Geological and geophysical studies of oil and gas potential of offshore areas of Circumarctic segment of the Earth. Oil and gas geology, 2011, no. 6, pp. 45—58. (In Russian). 32. Milam K. BP Celebrates 40 Years of Production in Alaska’s Prudhoe Bay. AAPG Explorer, February 2019. Available at: https://explorer.aapg.org/story/articleid/51286/bp-celebrates-40-years-of-production-in-alaskas-prudhoe-bay. 33. Bailey A. Company is acquiring leases with intention to appraise major oil find. Petroleum news, 2021, vol. 26, no. 4. Available at: https://www.petroleumnews.com/pntruncate/723610240.shtml. 34. Triezenberg P. J., Hart P. E., Childs J. R. National Archive of Marine Seismic Surveys (NAMSS): A USGS data website of marine seismic reflection data within the U.S. Exclusive Economic Zone (EEZ): U.S. Geological Survey Data Release, 2016. DOI: 10.5066/F7930R7P. 35. Banet A. C. Oil and gas development of Alaska’s North Slope: Past results and future prospects. Open file report 34. Bureau of Land Management Alaska State office. Anchorage, Alaska, 1991, 42 p. 36. Collett T. S., Lee M. W., Agena W. F., Miller J. J., Lewis K. A., Zyrianova M. V. et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Marine and Petroleum Geology, 2011, vol. 28 (2), pp. 279—294. 37. Sellmann P. V., Chamberlain E. J. Permafrost beneath the Beaufort Sea: Near Prudhoe Bay, Alaska. Paper presented at the Offshore Technology Conference, Houston, Texas, April 1979. Paper number: OTC-3527-MS, 1979. Available at: https://www.doi.org/10.4043/3527-MS. 38. Hart P. E., Pohlman J. W., Lorenson T. D., Edwards B. D. Beaufort Sea deep-water gas hydrate recovery from a seafloor mound in a region of widespread BSR occurrence. Proceedings of the 7th International conference on gas hydrates (ICGH 2011), Edinburgh, Scotland, 2011. 39. Brothers L. L., Hart P. E., Ruppel C. D. Minimum distribution of subsea ice‐bearing permafrost on the US Beaufort Sea continental shelf. Geophysical research letters, 2012, vol. 39, no. 15. Available at: https://doi.org/10.1029/2012GL052222. 40. Grantz A., Hart P. E., Kvenvolden K. A. Seismic reflection character, distribution, estimated volume and stability of gas hydrate deposits beneath the Arctic Ocean north of Alaska. EOS, Transactions of the American Geophysical Union, 1989, vol. 70, p. 1152. 41. Kvenvolden K. A., Grantz A. Gas hydrates of the Arctic Ocean region. The Arctic Ocean Region (Geol. North Am., L), Colo. Geol. Soc. Am., 1990, pp. 539—549. 42. Andreassen K., Hart P. E., Grantz A. Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea. J. of Geophysical Research: Solid Earth, 1995, vol. 100, no. B7, pp. 12659—12673. 43. Vogt P. R., Cherkashev G., Ginsburg G., Ivanov G., Vilkov A. et al. Haakon Mosby mud volcano provides unusual example of venting. EOS, Transactions American Geophysical Union, 1997, vol. 78, no. 48, pp. 549—557. Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|