| ||||
| ||||
|
Home » Archive of journals » Volume 15, No. 4, 2025 » Quantitative characteristics of microbial communities in current marine bottom sediments of East Murman QUANTITATIVE CHARACTERISTICS OF MICROBIAL COMMUNITIES IN CURRENT MARINE BOTTOM SEDIMENTS OF EAST MURMANJOURNAL: Volume 15, No. 4, 2025, p. 605-618HEADING: Regional problems AUTHORS: Pugovkin, D.V., Usyagina, I.S., Ivanova, N.S., Venger, M.P., Meshcheriakov, N.I. ORGANIZATIONS: Murmansk Marine Biological Institute of Kola Scientific Center of the Russian Academy of Sciences DOI: 10.25283/2223-4594-2025-4-605-618 UDC: 621.039.86(268.45+210.5) The article was received on: 16.06.2025 Keywords: sediments, Kola peninsula, radionuclides, coastal area, bottom sediments, microbial communities Bibliographic description: Pugovkin, D.V., Usyagina, I.S., Ivanova, N.S., Venger, M.P., Meshcheriakov, N.I. Quantitative characteristics of microbial communities in current marine bottom sediments of East Murman. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 4, pp. 605-618. DOI: 10.25283/2223-4594-2025-4-605-618. (In Russian). Abstract: The authors investigate quantitative characteristics of microbial communities in the bottom sediments of the Zelenetskaya and Yarnyshnaya bays of the Barents Sea formed in the first half of the 20th century. In the surface sediments of the Zelenetskaya bay, exposed to anthropogenic influences, the number of bacteria is higher than in the Yarnyshnaya bay. In the columns collected from both bays, a general trend towards a decrease in the number of microorganisms in the vertical profile is observed. Changes in the morphological structure of the bacterial community in the bottom sediments, manifested by a different ratio of coccoid and rod-shaped bacterial groups, may be due to the particularities of their habitat. The presence of hydrocarbon-oxidizing bacteria in the lower layers of the sediments in Zelenetskaya Bay (up to 31 cm), dating back to the period before the start of active economic development of the settlement of Dalnie Zelentsy (< 1906) suggests that petroleum hydrocarbons are able to penetrate to a significant depth of the bottom sediment. Finance info: Sampling, analysis and interpretation of the material obtained during bottom sediment studies in Zelenetskaya Bay were carried out within the framework of the State assignment of the MMBI RAS. Sampling in the coastal expedition, processing, analysis and interpretation of the material obtained during studies of bottom sediments in Yarnyshnaya bay were supported by the grant from the Russian Science Foundation (No. 22-17-00243-P) “Radiation oceanology and geoecology of the coastal shelf of the Barents and White Seas. Bioinert interactions in the system: bottom sediments — water — macroalgae — microorganisms, their role in the remediation of the marine coastal ecosystem under radiation and chemical pollution in the Arctic”. References: 1. Kallmeyer J., Kallmeyer J., Pockalny R., Adhikari R. R., Smith D. C., D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences, 2012, vol. 109, no. 40, pp. 16213—16216. DOI: 10.1073/pnas.1203849109. 2. Parkes R. J., Cragg B., Roussel E., Webster G., Weightman A., Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Marine Geology, 2014, vol. 352, pp. 409—425. DOI: 10.1016/j.margeo.2014.02.009. 3. Bissett A., Burke C., Cook P. L., Bowman J. P. Bacterial community shifts in organically perturbed sediments. Environmental Microbiology, 2007, vol. 9, no. 1, pp. 46—60. DOI: 10.1111/j.1462-2920.2006.01110.x. 4. Duran R., Bonin P., Jezequel R., Dubosc K., Gassie C., Terrisse F., Abella J., Cagnon C., Militon C., Michotey V., Gilbert F., Cuny P., Cravo-Laureau C. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments. Environmental Science and Pollution Research, 2015, vol. 22, pp. 15248—15259. DOI: 10.1007/s11356-015-4373-2. 5. Rizzo C. et al. Effects of a simulated acute oil spillage on bacterial communities from Arctic and Antarctic marine sediments. Microorganisms, 2019, vol. 7, no. 12, p. 632. DOI: 10.3390/microorganisms7120632. 6. Sahm K., Berninger U. G. Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments (Svalbard, Arctic Ocean). Marine Ecology Progress Series, 1998, vol. 165, pp. 71—80. DOI: 10.3354/meps165071. 7. Hoshino T., Doi H., Uramoto G. I., Wörme L., Adhikari R. R., Xiao N., Moronoa Y., D’Hondtf S., Hinrichs K.-U., Inagaki F. Global diversity of microbial communities in marine sediment. Proceedings of the National academy of sciences, 2020, vol. 117, no. 44, pp. 27587—27597. DOI: 10.1073/pnas.1919139117. 8. Robbins J. A. Geochemical and geophysical applications of radioactive lead. Biogeochemistry of Lead in the Environment. Nriagu J. O. (ed.). Amsterdam, Elsevier Scientific, 1978, pp. 285—393. 9. Appleby P. G. 210Pb dating by low-background gamma. Hydrobiologia, 1986, vol. 143, pp. 21—27. DOI: 10.1007/BF00026640. 10. Meshcheriakov N. I., Usyagina I. S., Ilyin G. V., Ivanova N. S. Dating of the recent sedimentary strata of the marginal basins of Åastern Murman (Kola Peninsula) using the example of Yarnyshnaya and Zelenetskaya Bays. Arctic: Ecology and Economy, 2024, vol. 14, no. 3, pp. 393—405. DOI: 10.25283/2223-4594-2024-3-393-405. (In Russian). 11. Il’in G. V., Moiseev D. V., Shirokolobov D. V., Deryabin A. A., Pavlova L. G. Long-term dynamics of hydrological conditions of the Zelenetskaya Bay, East Murman. Vestnik MGTU. Ser. Earth Sciences, 2016, vol. 19, no. 1-2, pp. 268—277. (In Russian). 12. Tarasov G. A., Pogodina I. A., Khasankaev V. B., Kukina N. A., Mityaev M. V. Sedimentation processes on glacial shelves. Apatity, KSC RAS, 2000, 473 p. (In Russian). 13. Mityaev M. V., Gerasimova M. V., Berger V. J. Suspended particulate matter and vertical fluxes of sedimentary material in bays of the Murmansk (Barents Sea) and Karelian (White Sea) coasts. Oceanology, 2017, vol. 57, no. 2, pp. 306—314. DOI: 10.7868/S0030157416060113. 14. Sanchez-Cabeza J. A., Ruiz-Fernández A. C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 2012, vol. 82, pp. 183—200. DOI: 10.1016/j.gca.2010.12.024. 15. Sivintsev Yu. V., Vakulovsky S. M., Vasiliev A. P. et al. Technogenic Radionuclides in the Seas Surrounding Russia. Moscow, IzdAT, 2005, 624 p. (In Russian). 16. Andreeva I. A., Lapina N. N. Methods of granulometric analysis of bottom sediments of the World Ocean and geological interpretation of the results of laboratory study of the material composition of sediments. St. Petersburg, VNIIOkeangeologiya, 1998, 45 p. (In Russian). 17. Dauvalter V. A. Bottom sediments geoecology of lakes. Murmansk, Murmansk State Technical Univ., 2012, 242 p. (In Russian). 18. Porter K. G., Feig Y. S. The use DAPI for identifying and counting of aquatic microflora. Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943—948. 19. Aaronson A. A. Experimental Microbial Ecology. New York; London, Academic Press, 1970, 236 ð. 20. Il’inskiy V. V. Heterotrophyc bacterioplancton in Practical hydrobiology. Freshwater ecosystems: a textbook for students biologists. Ed. by V. D. Fedorov, V. I. Kapkov. Moscow, PIM, 2006, 367 p. (In Russian). 21. Mills A. L., Breul C., Colwell R. R. Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probably number method. Canadian J. of Microbiology, 1978, vol. 24, no. 5, pp. 552—557. DOI: 10.1139/m78-089. 22. Meyer-Reil L. A. Bacterial growth rates and biomass production. Microbial ecology of a brackish water environment. Berlin, Heidelberg: Springer, 1977, pp. 223—236. DOI: 10.1007/978-3-642-66791-6_16. 23. Bussmann I., Philipp B., Schink B. Factors influencing the cultivability of lake water bacteria. J. of Microbiological Methods, 2001, vol. 47, no. 1, pp. 41—50. DOI: 10.1016/S0167-7012(01)00289-5. 24. Stevens H., Simon M., Brinkhoff T. Cultivable bacteria from bulk water, aggregates, and surface sediments of a tidal flat ecosystem. Ocean dynamics, 2009, vol. 59, pp. 291—304. DOI: 10.1007/s10236-008-0168-z. 25. Ryzhik I., Pugovkin D., Makarov M., Roleda M. Y., Basova L., Voskoboynikov G. Tolerance of Fucus vesiculosus exposed to diesel water-accommodated fraction (WAF) and degradation of hydrocarbons by the associated bacteria. Environmental Pollution, 2019, vol. 254, p. 113072. DOI: 10.1016/j.envpol.2019.113072. 26. Rusakov V. Y., Lukmanov R. A., Savin A. S. About fluctuations in the excess 210Pb flux into the East Siberian Arctic Shelf sediments, the Laptev Sea. J. of Environmental Radioactivity, 2024, vol. 273, p. 107387. DOI: 10.1016/j.jenvrad.2024.107387. 27. Ravenschlag K,. Sahm K., Pernthaler J., Amann R. High bacterial diversity in permanently cold marine sediments. Applied and environmental microbiology, 1999, vol. 65, no. 9, pp. 3982—3989. DOI: 10.1128/AEM.65.9.3982-3989.1999. 28. Karnaukhova G. A. Sedimentation rate and physical properties of bottom sediments in the Angara reservoirs under the cyclical conditions of the level regime. LITHOSPHERE (Russia), 2020, vol. 20, no. 2, pp. 271—279. DOI: 10.24930/1681-9004-2020-20-2-271-279. 29. Matishov G. G., Bulysheva N. I., Voskoboinikov G. M. et al. Scientific basis for monitoring and forecasting hazardous phenomena in the zone of strategic facilities in the water area of the Russian seas. Rostov-on-Don, SSC RAS Publishers, 2022, 236 p. (In Russian). 30. Begmatov S., Savvichev A. S., Kadnikov V. V., Beletsky A. V., Rusanov I. I., Klyuvitkin A. A., Novichkova E. A., Mardanov A. V., Pimenov N. V., Ravin N. V. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea. Microorganisms, 2021, vol. 9, no. 11, p. 2362. DOI: 10.3390/microorganisms9112362. 31. Baitaz V. A., Baitaz O. N., Mishustina I. E. Cell morphometry, abundance and biomass of the main morphological groups of bacterioplankton in the Barents Sea. Oceanology, 1996, vol. 36, no. 6, pp. 883—887. (In Russian). 32. Gordienko A. P. On the role of bacterioplankton in the functioning of the marine ecosystem. Marine biological research: achievements and prospects. Vol. 2. Sevastopol, 2016, pp. 264—267. (In Russian). 33. Venger M. P. Virio- and bacterioplankton of the Barents Sea in the autumn period. Transactions of the Kola Scientific Center RAS, 2021, vol. 12, no. 3 (9), pp. 45—53. DOI: 10.37614/2307-5252.2021.3.9.006. (In Russian). 34. Sherysheva N. G., Rakitina T. A., Povetkina L. P. Influence of the ecological state of reservoirs on the size-morphological structure of bacteriobenthos (on the example of Kama reservoirs). Karelian Scientific J., 2016, vol. 5, no. 3 (16), pp. 102—106. (In Russian). Download » | ||||
|
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|