| ||||
| ||||
Home » Archive of journals » Volume 15, No. 3, 2025 » The use of the Calla Palustris for phytoremediation of industrial wastewater from metals in the conditions of the North on the example of JSC “Karelskiy Okatysh” THE USE OF THE CALLA PALUSTRIS FOR PHYTOREMEDIATION OF INDUSTRIAL WASTEWATER FROM METALS IN THE CONDITIONS OF THE NORTH ON THE EXAMPLE OF JSC “KARELSKIY OKATYSH”JOURNAL: Volume 15, No. 3, 2025, p. 116-126HEADING: New technologies for the Arctic AUTHORS: Chukaeva, M.A., Petrov, D.S., Malygin, N.A. ORGANIZATIONS: Saint Petersburg Mining University, LLC “Elcom” DOI: 10.25283/2223-4594-2025-3-116-126 UDC: 628.357.4 The article was received on: 05.03.2025 Keywords: bioaccumulation, heavy metals, phytoremediation, Calla Palustris, sewage Bibliographic description: Chukaeva, M.A., Petrov, D.S., Malygin, N.A. The use of the Calla Palustris for phytoremediation of industrial wastewater from metals in the conditions of the North on the example of JSC “Karelskiy Okatysh”. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2025, vol. 15, no. 3, pp. 116-126. DOI: 10.25283/2223-4594-2025-3-116-126. (In Russian). Abstract: The authors have assessed the efficiency of phyto-treatment facilities of JSC “Karelsky Okatysh” located in the Republic of Karelia, and have found out insufficient degree of wastewater treatment for the main metal pollutants (Fe, Mn and Ni). Among the plants used at phytoremediation facilities, the ability to accumulate the specified metals has been revealed in marsh cinquefoil and broadleaf cattail (Comarum palustre and Typha latifolia). The bioaccumulation coefficients for plants sampled from phytomats are the following: BAFFe = 5860, BAFMn = 13764, BAFNi = 1242 and BAFFe = 5150, BAFMn = 19587, BAFNi = 766, respectively. To increase the efficiency of phytoremediation facilities, the authors suggest using marsh calla (Calla Palustris) as an autochthonous species for northern territories. The model experiment results have revealed that this plant species has a high level of tolerance to these metals and possesses the potential for phytoremediation. Calla Palustris most effectively accumulate Fe in absolute terms, and Ni in relative terms. Compared with the reference data, during the 4 weeks of the experiment, the concentration of Fe in plant tissues increased by 1300 mg/kg of dry weight when grown in a solution with a concentration of 5 mg/dm3. The concentration of Ni in plant tissues increased by more than 300 times when grown in a solution with a concentration of 0.5 mg/dm3. Finance info: The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (FSRW-2024-0005 “New approaches to environmental monitoring of Arctic ecosystems affected by mineral resource complex facilities and development of technologies for their comprehensive restoration”) References: 1. Dmitrieva D. M., Chanysheva A. F. Contribution of mining companies to the sustainable development of the mineral resource base in the arctic region: a new approach to ranking key actors and assessing their interaction. Sever i Rynok: Formirovanie Ekonomicheskogo Poryadka, 2024, vol. 27, no. 2, pp. 71—87. DOI: 10.37614/2220-802X.2.2024.84.006. (In Russian). 2. Romasheva N. V., Babenko M. A., Nikolaichuk L. A. Sustainable Development of the Russian Arctic Region: Environmental Problems and Ways to Solve Them. Mining Informational and Analytical Bull., 2022, vol. 10, no. 2, pp. 78—87. DOI: 10.25018/0236_1493_2022_102_0_78. 3. Kashulin N. A., Bekkelund A., Dauvalter V. A. Long-term hydrochemical changes and “Harmful Algal Blooms” in the Arctic Lake Imandra. Arctic: Ecology and Economy, 2021, vol. 11, no. 3, pp. 327—340. DOI: 10.25283/2223-4594-2021-3-327-340. (In Russian). 4. Matveeva V. A., Alekseenko A. V., Karthe D., Puzanov A. V. Manganese pollution in mining-influenced rivers and lakes: Current state and forecast under climate change in the Russian Arctic. Water, 2022, vol. 14, no. 7. DOI: 10.3390/w14071091. 5. Bazova M. M., Koshevoi D. V. The assessment of the current state of water quality in the Norilsk industrial region. Arctic: Ecology and Economy, 2017, no. 3 (27), ðð. 49—60. DOI: 10.25283/2223-4594-2017-3-49-60. (In Russian). 6. Kharko P. A., Danilov A. S. Evaluation of the effectiveness of neutralization and purification of acidic waters from metals with ash when using alternative fuels from municipal waste. J. of Mining Institute, 2024. EDN: CGGRHJ. (In Russian). 7. Sverchkov I. P., Povarov V. G. Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems. J. of Mining Institute, 2024, vol. 267, pp. 372—380. EDN: PUUADY. (In Russian). 8. Sun Y., Zhou S., Pan S.-Y., Zhu S., Yu Y., Zheng H. Performance evaluation and optimization of flocculation process for removing heavy metal. Chemical Engineering J., 2019, p. 123911. DOI: 10.1016/j.cej.2019.123911. 9. Zubkova O. S., Alekseev A. I., Zalilova M. M. Research of combined use of carbon and aluminum compounds for wastewater treatment. Chem Chem Tech., 2020, vol. 63 (4), pp. 86—91. DOI: 10.6060/ivkkt.20206304.6131. (In Russian). 10. Chakraborty R., Asthana A., Singh A. K., Jain B., Susan A. B. H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Intern. J. of Environmental Analytical Chemistry, 2020, pp. 1—38. DOI: 10.1080/03067319.2020.1722811. 11. Antoninova N. Yu., Sobenin A. V., Usmanov A. I., Shepel K. V. Assessment of the possibility of usingiron-magnesium production waste for wastewater treatment from heavy metals (Cd2+, Zn2+, Co2+, Cu2+). J. of Mining Institute, 2023, vol. 260, pp. 1—10. DOI: 10.31897/PMI.2023.34. 12. Abdullah N., Yusof N., Lau W. J., Jaafar J., Ismail A. F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. of Industrial and Engineering Chemistry, 2019, vol. 76, pp. 17—38. DOI: 10.1016/j.jiec.2019.03.029. 13. Qasem N. A. A., Mohammed R. H., Lawal D. U. Removal of heavy metal ions from wastewater: a comprehensive and critical review. Clean Water, 2021, vol. 4, pp. 1—15. DOI: 10.1038/s41545-021-00127-0. 14. Maarof H. I., Daud W. M. A. W., Aroua M. K. Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. Reviews in Chemical Engineering, 2017, vol. 33 (4), pp. 359—386. DOI: 10.1515/REVCE-2016-0021. 15. Opekunov A. Yu., Korshunova D. V., Opekunova M. G., Somov V. V., Akulov D. A. Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies. J. of Mining Institute, 2024, vol. 267, pp. 343—355. EDN: KKNLQG.(In Russian). 16. Pashkevich M. A., Korotaeva A. E. Evaluation of the efficiency of the phytoextraction process in the quarry wastewater treatment. Mining Informational and Analytical Bull., 2022, vol. 6—1, pp. 349—360. DOI: 10.25018/0236_1493_2022_61_0_349. (In Russian). 17. Sergeev V., Balandinsky D., Romanov G., Rukin G. Sorption treatment of water from chromium using biochar material. Arab J. of Basic and Applied Sciences, 2023, vol. 30 (1), pp. 299—306. DOI: 10.1080/25765299.2023.2207407. 18. Ilyin G. V., Usyagina I. S., Makarov M. V., Matishov G. G., Voskoboynikov G. M., Salakhov D. O. Biosorption of technogenic radionuclides by the Barents Sea littoral algae Fucus vesiculosus L. Arctic: Ecology and Economy, 2024, vol. 14, no. 4, pp. 536—548. DOI: 10.25283/2223-4594-2024-4-536-548. (In Russian). 19. Yang B., Lan C. Y., Yang C. S., Liao W. B., Chang H., Shu W. S. Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environmental Pollution, 2006, vol. 143, pp. 499—512. DOI: 10.1016/j.envpol.2005.11.045. 20. Hancock M. Artificial floating islands for nesting Black-throated Divers Gavia arctica in Scotland: construction, use and effect on breeding success. Bird Study, 2010, vol. 1 (2), pp. 165—175. DOI: 10.1080/00063650009461172. 21. Kristanti R. A., Hadibarata T. Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Current Opinion in Environmental Science & Health, 2023, vol. 32, p. 100451. DOI: 10.1016/j. coesh.2023.100451. 22. Ivanova L. A., Myazin V. A., Korneikova M. V., Fokina N. V., Evdokimova G. A., Redkina V. V. It’s time to clean up the Arctic. Creation of a phyto-purification system for post-treatment of wastewater from mining enterprises from mineral nitrogen compounds. Apatity, Publ. House of the Kola Scientific Center, 2021, 88 p. (In Russian). 23. Enochs B., Meindl G., Shidemantle G., Wuerthner V., Akerele D., Bartholomew A. et al. Short and longterm phytoremediation capacity of aquatic plants in Cu-polluted environments. Heliyon, 2023, vol. 9, p. e12805. DOI: 10.1016/j.heliyon.2023.e12805. 24. Kristanti R. A., Hadibarata T. Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Current Opinion in Environmental Science & Health, 2023, vol. 32, p. 100451. DOI: 10.1016/j.coesh.2023.100451. 25. Wibowo Y. G., Nugraha A. T., Rohman A. Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environmental Nanotechnology, Monitoring & Management, 2023, vol. 20, p. 100781. DOI: 10.1016/j.enmm.2023.100781. 26. Sorokina G. A., Zlobina E. V., Bondareva L. G., Subbotin M. A. Assessment of the possibility of using Pistia stratiotes and duckweed (Lemna minor) for phytoremediation of the aquatic environment. Bull. of KrasGAU, 2013, no. 11, pp. 182—186. EDN: SCVIVJ. (In Russian). 27. Fonseka W., Gunatilake S. K., Jayawardana J. M. C. K., Wijesekara H. Analyzing the Efficacy of Salvinia molesta and Pistia stratiotes as Phytoremediation Agent for Heavy Metals. KDU J. of Multidisciplinary Studies, 2023, vol. 5 (2), pp. 33—44. DOI: 10.4038/kjms.v5i2.75. 28. Minaeva O. M., Akimova E. E., Minaev K. M. Absorption of a number of heavy metals from aqueous solutions by aquatic hyacinth plants (Eichhornia crassipes (mart.) Solms). Bull. of Tomsk State University. Biology, 2009, no. 4 (8), pp. 106—111. EDN: LAIZOB. (In Russian). 29. Rezania S., Ponraj M., Talaiekhozani A., Mohamad S. E., Md Din M. F., Taib S. M., Sairan F. M. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J. of Environmental Management, 2015, vol. 163, pp. 125—133. DOI: 10.1016/j.jenvman.2015.08.018. 30. Chitimus A. D., Nedeff V., Sandu I., Radu C., Mosnegutu E., Sandu I. G., Barsan N. Absorption Capacity of Heavy Metals in the Case of Typha Latifolia Plant Species. Revista de Chimie, 2019, vol. 70 (8), pp. 3058—3061. DOI: 10.37358/RC.19.8.7487. 31. Chambers P. A., Lacoul A. P., Murphy A. K. J., Thomaz A. S. M., Lacoul P., Murphy K. J., Thomaz S. M. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 2008, vol. 595, pp. 9—26. DOI: 10.1007/s10750-007-9154-6. 32. Wang G. X., Zhang L. M., Chua H., Li X. D., Xia M. F., Pu P. M. A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes. Ecological Engineering, 2009, vol. 35 (4), pp. 582—590. DOI: 10.1016/j.ecoleng.2008.06.006. 33. Kucherov I. B., Zverev A. A., Chinenko S. V. Cenotic positions of Arctic and Arctic Alpine plant species in communities of the taiga zone of European Russia. Flora of Asian Russia: Bulletin of the Central Siberian Botanical Garden SB RAS, 2023, vol. 16, no. 3, pp. 191—216. DOI: 10.15372/RMAR20230301. (In Russian). 34. Dudas M., Slezak M., Hrivnak R. Distribution, ecology and vegetation affinity of bog arum (Calla palustris) in Slovakia. Biologia, 2021, vol. 76, pp. 2021—2029. DOI: 10.1007/s11756-021-00779-w. 35. Petrov D. S., Korotaeva A. E., Pashkevich M. A., Chukaeva M. A. Assessment of heavy metal accumulation potential of aquatic plants for bioindication and bioremediation of aquatic environment. Environ Monit Assess, 2023, vol. 195, no. 122. DOI: 10.1007/s10661-022-10750-0. 36. Rinaldi F., Kominkova D., Berchova K., Daguenet J., Pecharova E. Stable cesium (133Cs) uptake by Calla palustris from different substrates. Ecotoxicology and Environmental Safety, 2017, vol. 139, pp. 301—307. DOI: 10.1016/j.ecoenv.2017.01.048. 37. Patent ¹ 2560631 Russian Federation, IPC C02F 3/32 (2006.01), E02B 15/04 (2006.01). Device for biological wastewater treatment of quarry waters: ¹ 2014122204/13: application 30.05.2014: published 20.08.2015 / Evdokimova G. A., Ivanova L. A., Miazin V. A. 10 p. (In Russian). 38. Ivanova L. A., Myazin V. A., Korneikova M. V. Ways to increase the efficiency of post-treatment of waste quarry waters from mineral nitrogen compounds in the conditions of the Kola North. Proceedings of the Fersman scientific session of the GI KSC RAS, 2018, no. 15, pp. 456—459. DOI: 10.31241/FNS.2018.15.116. (In Russian). 39. Alloway B. J. Micronutrient Deficiencies in Global Crop Production: An Introduction. Micronutrient Deficiencies in Global Crop Production. [S. l.], Springer, 2008, pp. 1—39. DOI: 10.1007/978-1-4020-6860-7. Download » | ||||
© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594
|