Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 14, No. 4, 2024 » Methodology for estimating greenhouse gas emissions from Arctic shipping

METHODOLOGY FOR ESTIMATING GREENHOUSE GAS EMISSIONS FROM ARCTIC SHIPPING

JOURNAL: Volume 14, No. 4, 2024, p. 596-604

HEADING: Ecology

AUTHORS: Vasileva, Z.V., Dzaparov, S.A., Vasekha, M.V.

ORGANIZATIONS: Murmansk Arctic State University

DOI: 10.25283/2223-4594-2024-4-596-604

UDC: 504.064

The article was received on: 14.08.2024

Keywords: Arctic shipping, greenhouse gases, water area, emission assessment, AIS-data

Bibliographic description: Vasileva, Z.V., Dzaparov, S.A., Vasekha, M.V. Methodology for estimating greenhouse gas emissions from Arctic shipping. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 4, pp. 596-604. DOI: 10.25283/2223-4594-2024-4-596-604. (In Russian).


Abstract:

In recent years, there has been a significant increase in maritime economic activity in the Arctic zone of the Russian Federation. The intensification of shipping in the Arctic waters leads to an increase in greenhouse gas emissions, for the accurate assessment of which there are currently no effective tools. The study proposes a methodology for the general quantification of emissions from shipping in a specific water area, based on the use of AIS data from satellite systems. Using the proposed approach, the authors for the first time have assessed and analyzed the structure of shipping traffic as a source of emissions and established the dynamics and volumes of greenhouse gas emissions in a specific area of the Arctic water area.


Finance info: The research was carried out within the framework of the initiative R&D projects of the Murmansk Arctic University: no. 124041100089-4 “Environmental safety and sustainable development of marine transport, logistics and aquaterritorial systems of the Arctic zone of the Russian Federation” and no. 24050700058-6 “Study of dynamics and routes of transportation of hydrocarbons, forecasting scenarios for the development of the transport and logistics complex in the Arctic”.

References:

1. Antonov K. L., Poddubny V. A., Markelov Yu. I. et al. Some results of greenhouse gas monitoring in the Arctic region of Russia. Arctic: Ecology and Economy, 2018, no. 1 (29), pp. 56—67. DOI: 10.25283/2223-4594-2018-1-56-67. (In Russian).

2. Deng Sh., Mi Zh. A review on carbon emissions of global shipping. Marine Development, 2023, vol. 1. DOI: 10.1007/s44312-023-00001-2.

3. Koehler H. NOx Emissions from Oceangoing Ships: Calculation and Evaluation. Conference: ASME 2003 Internal Combustion Engine Division Spring Technical Conference — 2003. DOI: 10.1115/ICES2003-0689.

4. Nunes R. A. O., Alvim-Ferraz M. C. M., Martins F. G., Sousa S. I. V. The activity-based methodology to assess ship emissions — a review. Environmental Pollution, 2017, vol. 231, pp. 87—103. DOI: 10.1016/j.envpol.2017.07.099.

5. Deniz C., Kilic A., Cıvkaroglu G. Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental Monitoring and Assessment, 2010, vol. 171 (1—4), pp. 219—228. DOI: 10.1007/s10661-009-1273-2.

6. Corbett J. J., Koehler H. W. Updated emissions from ocean shipping. J. of Geophysical Research Atmospheres, 2003, vol. 108, D20, p. 4650. DOI: 10.1029/2003JD003751.

7. Jalkanen J. P., Brink A., Kalli J., Pettersson H., Kukkonen J., Stipa T. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmospheric Chemistry and Physics, 2009, vol. 9 (23), pp. 9209—9223. DOI: 10.5194/acp-9-9209-2009.

8. Deng Sh., Mi Zh. A review on carbon emissions of global shipping. Marine Development, 2023, vol. 1. DOI: 10.1007/s44312-023-00001-2.

9. Mabunda S. A., Astito A., Hamdoune S. Estimating Carbon Dioxide and Particulate Matter Emissions from Ships using Automatic Identification System Data. Intern. J. of Computer Applications, 2014, vol. 88. DOI: 10.5120/15358-3823.

10. Li Haijiang, Jia Peng, Wang Xinjian. Ship carbon dioxide emission estimation in coastal domestic emission control areas using high spatial-temporal resolution data: A China case. Ocean and Coastal Management, 2022, vol. 232. DOI: 10.1016/j.ocecoaman.2022.106419.

11. Johansson L., Jalkanen J.-P., Kukkonen J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmospheric Environment, 2017, vol. 167, pp. 403—415. DOI: 167.10.1016/j.atmosenv.2017.08.042.

12. Chen D., Zhao Y., Nelson P. et al. Estimating ship emissions based on AIS data for port of Tianjin, China. Atmospheric Environment, 2016, vol. 145. DOI: 10.1016/j.atmosenv.2016.08.086.

13. Chen D., Wang X., Nelson P. et al. Ship emission inventory and its impact on the PM 2.5 air pollution in Qingdao Port, North China. Atmospheric Environment, 2017, vol. 166. DOI: 10.1016/j.atmosenv.2017.07.021.

14. Chen W.-J., Song B.-L, Zhang J.-S. Carbon emission from coastal container ports in China based on AIS data. Zhongguo Huanjing Kexue [China Environmental Science], 2022, vol. 42, pp. 3403—3411.

15. Chen D., Zhao N., Zhou Y. et al. Contribution of ship emissions to the concentration of PM2.5: A comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China. The Science of the total environment, 2017, vol. 610—611, pp. 1476—1486. DOI: 10.1016/j.scitotenv.2017.07.255.

16. Li C., Borken-Kleefeld J., Zheng J., Yuan Z. et al. Decadal evolution of ship emissions in China from 2004 to 2013 by using an integrated AIS-based approach and projection to 2040. Atmospheric Chemistry and Physics, 2018, vol. 18, pp. 6075—6093. DOI: 10.5194/acp-18-6075-2018.

17. Xiao G., Wang T., Luo Y., Yang D. Analysis of port pollutant emission characteristics in United States based on multiscale geographically weighted regression. Front. Mar. Sci., 2023, 10, 1131948. Available at: https://doi.org/10.3389/fmars.2023.1131948.

18. Wu S,, Torp K., Sakr M., Zimanyi E. Evaluation of Vessel CO2 Emissions Methods using AIS Trajectories. Intern. Symposium on Spatial and Temporal Databases (SSTD’23), 2023. DOI: 10.1145/3609956.3609960.

19. Moreno-Gutiérrez J., Grados C., Uriondo Z., Llamas J. Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain. Atmospheric Measurement Techniques, 2012. DOI: 10.5194/amtd-5-5953-2012.

20. Moreno-Gutiérrez J., Calderay F., Saborid N., Boile M., Valero M., Grados C. Methodologies for Estimating Shipping Emissions and Energy Consumption: A Comparative Analysis of Current Methods. Energy, 2015, vol. 86. DOI: 10.1016/j.energy.2015.04.083.

21. Johansson L., Jalkanen J.-P., Kukkonen J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmospheric Environment, 2017. DOI: 167.10.1016/j.atmosenv.2017.08.042.

22. Ribeiro da Silva J. N., Santos T. A., Teixeira A. P. Methodology for Predicting Maritime Traffic Ship Emissions Using Automatic Identification System Data. J. of Marine Science and Engineering, 2024, vol. 12, p. 320. DOI: 10.3390/jmse12020320.

23. Air pollutant emission inventory guidebook. European Environment Agency. 2013. Available at: www.eea.europa.eu/publications/emep-eea-guidebook-2013/file/.

24. Ôóíòóñîâ À. À. Îöåíêà óâåëè÷åíèÿ ðàñõîäà òîïëèâà âñëåäñòâèå ñòàðåíèÿ ìîðñêîãî ñóäíà // Òðàíñïîðò. äåëî Ðîññèè. — 2015. — ¹ 3. — Ñ. 172—173.

Funtusov A. A. Assessment of the increase in fuel consumption due to aging of a marine vessel. Transport business of Russia, 2015, no. 3, pp. 172—173. (In Russian).


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594