Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 14, No. 4, 2024 » Biosorption of technogenic radionuclides by the Barents Sea littoral algae Fucus vesiculosus L.

BIOSORPTION OF TECHNOGENIC RADIONUCLIDES BY THE BARENTS SEA LITTORAL ALGAE FUCUS VESICULOSUS L.

JOURNAL: Volume 14, No. 4, 2024, p. 536-548

HEADING: Study and development of nature resources of the Arctic

AUTHORS: Ilyin, G.V., Usyagina, I.S., Makarov, M.V., Matishov, G.G., Voskoboynikov, G.M., Salakhov, D.O.

ORGANIZATIONS: Murmansk Marine Biological Institute of Kola Scientific Center of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2024-4-536-548

UDC: 574.24+539.166.3

The article was received on: 01.08.2024

Keywords: radionuclides, experiment, macrophytes, adsorption, water salinity, thalli, assimilation

Bibliographic description: Ilyin, G.V., Usyagina, I.S., Makarov, M.V., Matishov, G.G., Voskoboynikov, G.M., Salakhov, D.O. Biosorption of technogenic radionuclides by the Barents Sea littoral algae Fucus vesiculosus L.. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 4, pp. 536-548. DOI: 10.25283/2223-4594-2024-4-536-548. (In Russian).


Abstract:

The authors have conducted laboratory experiments to study the ability of the Barents Sea brown alga Fucus vesiculosus L. to adsorb technogenic radionuclides from seawater of various salinity (8, 18 and 35 psu). They have obtained new data on the role of macroalgae communities in the geodynamics of radionuclides in the coastal zone of the seas. Fucuses are able to adsorb 40—80% of the radionuclide activity from water. The maximum intensity of adsorption is observed during the first day of exposure. The alga most effectively absorbs 152Eu, 241Am, 65Zn, 54Mn from water. The possibility of using the alga as a sorbent in biobarriers in incidents with emergency discharges of radioactivity into the sea is shown.


Finance info: The research was carried out within the state assignment of the MMBI RAS FMEE-2024-0016, and supported by the Russian Science Foundation grant (project no. 22-17-00243 “Radiation oceanology and geoecology of the coastal shelf of the Barents and White Seas. Bioinert interactions in the system: bottom sediments — water — macroalgae — microorganisms, their role in the marine coastal ecosystem remediation under radiation and chemical pollution in the Arctic”).

References:

1. Matishov D. G., Matishov G. G. Radiational ecological Oceanology. Apatity, Publ. KSC RAS, 2001, 417 p. (In Russian).

2. Sivintsev Y. V., Vakulovsky S. M., Vasiliev A. P., Vysotsky V. L., Gubin A. T., Danilyan V. A., Kobzev V. I., Kryshev I. I., Lavkovsky S. A., Mazokin V. A., Nikitin A. I., Petrov O. I., Pologikh B. G., Skorik Yu. I. Technogenic Radionuclides in the Seas Surrounding Russia. White Book, 2000. Moscow, IzdAT, 2005, 624 p. (In Russian).

3. Ilyin G. V., Usyagina I. S., Kasatkina N. E., Valuyskaya D. A. Radioecological status of arctic marine ecosystem and current ocean and coastal management. Transactions of the Kola Science Centre. Oceanology, 2020, iss. 7, pp. 260—275. Available at: https://doi.org/10.37614/2307-5252.2020.11.4.013. (In Russian).

4. Matishov G. G., Il’in G. V., Usyagina I. S. et al. Radioecological Condition of the Kola Peninsula Coastal Zone According to Observations in 2013—2020. Russian Meteorology and Hydrology, 2023, vol. 48, no. 4, pp. 361—369. Available at: https://doi.org/10.3103/S106837392304009X.

5. Ilyin G. V., Usiagina I. S. Radioecological Studies in the Murman Coastal Area of the Barents Sea as Part of Environmental Monitoring in the Management of Radioactive Waste. Atomic Energy, 2019, vol. 126, iss. 5, pp. 326—331. Available at: https://doi.org/10.1007/s10512-019-00558-6.

6. Matishov G. G., Usyaginà I. S., Ilyin G. V. Reconstruction of the Arrival and Migration of 137Cs and 90Sr in the Ecosystem of the Barents Sea. J. RFBR, 2022, iss. 2 (114), pp. 119—135. Available at: https://doi.org/10.22204/2410-4639-2022-114-02-119-135. (In Russian).

7. Tropin I. V. Ecological and biochemical aspects of accumulation of some heavy metals by marine macroalgae: Extended abstract of Doctor of Biological Science Dissertation. Moscow, Lomonosov Moscow State University, 1992, 20 p. (In Russian).

8. Egorov V. N., Polikarpov G. G., Mirzoyeva N. Yu., Kulebakina L. G., Artyomov Yu. G. The tendencies of change of the 90Sr and 137Cs concentration in the water and hydrobionts of the Sevastopol bays after Chernobyl NPP accident. Ecology of the Sea, 2019, vol. 50, pp. 83—85. Available at: https://repository.marine-research.ru/handle/299011/12.

9. Poklonov V. A., Kotelevzev S. A., Shestakova T. V., Ostroumov S. A. A decrease in concentrations of heavy metals in aquatic medium during interactions with macrophytes. Ecological chemistry, 2011, vol. 20, iss. 4, pp. 200—203. (In Russian).

10. Kuok Ch. K., Mel’nik I. V. Hydric macrophytes as biosorbents for heavy metals removal from water. Water: chemistry and ecology, 2012, no. 12 (54), pp. 132—137. Available at: https://lib.rucont.ru/efd/536139. (In Russian).

11. Voskobojnikov G. M., Pugovkin D. V. On the possible role of Fucus vesiculosus in the purification of coastal waters from oil pollution. Vestnik MGTU, 2012, vol. 15, iss. 4, pp. 716—720. Available at: https://studylib.ru/doc/2562374/na-russk.--ctr.5--tabl-3--ssylok-13--adobe-pdf. (In Russian).

12. Voskoboinikov G. M., Malavenda S. V., Metel’kova L. O. The role of algae macrophyte in bioremediation of petroleum products of Kola Bay of the Barents Sea. Marine Biological J., 2021, vol. 6, no. 3, pp. 35—43. DOI: 10.21072/mbj.2021.06.3.04. (In Russian).

13. Makarov V. N., Shoshina E. V. Algae-macrophytes of the Barents Sea. Life and conditions of its existence in the benthic of the Barents Sea. Apatity, Publishing of the Kola Branch of the USSR Academy of Sciences, 1996, pp. 52—66. Available at: https://studylib.ru/doc/2107123/makrofity-barenceva-morya---kol._skij-nauchnyj-centr-ran. (In Russian).

14. Ryndina D. D. Processes of sorption and desorption of radionuclides by marine soils, algae and detritus. Marine radioecology. Ed. by G. G. Polikarpov; Academy of Sciences of the Ukrainian SSR. Southern Institute of Biology Seas named after A. O. Kovalevsky. Kiev, Naukova dumka, 1970, pp. 46—62. Available at: https://repository.marine-research.ru/handle/299011/7057. (In Russian).

15. Malavenda S. V., Voskoboinikov G. M. Influence of abiotic factors on the structure of the population of the brown alga Fucus vesiculosus in East Murman (Barents Sea). Russian J. of Marine Biology, 2009, vol. 35, no. 2, pp. 132—137. — DOI 10.1134/S1063074009020047.

16. Malavenda S. V. The tolerance of the of the Barents Sea fucoids for variable salinity. Botanical J., 2011, vol. 96, iss. 3. pp. 342—349. Available at: https://elibrary.ru/download/elibrary_16401363_17070748.pdf. (In Russian).

17. Shoshina E. V., Kapkov V. I. Ecological features of harvesting fucoid algae of the Murman coast of the Barents Sea. Vestnik MGTU, 2014, vol. 17, iss. 1, pp. 268—277. Available at: https://doi.org/10.21443/1560-9278-2016-1/2-268-277.

18. Polikarpov G. G. Radioecology of marine organisms. Moscow, Atomizdat Publ., 1964, 295 p. Available at: https://repository.marine-research.ru/handle/299011/12748. (In Russian).

19. Polikarpov G. G., Egorov V. N. Marine dynamic radio-chemoecology. Moscow, Energoatomizdat Publ., 1986, 176 p. Available at: https://rest.marine-research.ru/api/core/bitstreams/d49db61a-c90a-4b99-9bd1-011b92c47f45/content. (In Russian).

20. Alikbaeva L. A., Afonin M. A., Ermolaeva-Makovskaya A. P. New handbook of chemist and technologist. Radioactive substances. Harmful substances. Hygienic standards. Ed. by A. V. Moskvin. St. Petersburg, Publ. house of NGO “Professional”, 2004, 1146 p. (In Russian).

21. Bolsunovsky A., Zotina T., Bondareva L. Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis). J. of Environmental Radioactivity, 2005, iss. 81(1), pp. 33—46.

22. Zotina T. A. The Distribution of Artificial Radionuclides in the Biomass of Macrophytes of the Yenisei River. Radiation biology. Radioecology, 2009, vol. 49, iss. 6. pp. 729—737. Available at: https://elibrary.ru/download/elibrary_12989737_71806008.pdf. (In Russian).

23. Kalistratova V. S., Belyaev I. K., Zhorova E. S., Nisimov P. G., Parfenova I. M., Tishchenko G. S., Tsapkov M. M. Radiobiology of incorporated radionuclides. Moscow, Burnasyan FMBC of the FMBA of Russia Publ., 2012, 464 p. (In Russian).

24. Sayenko G. N. Metals and halogens in marine organisms. Moskow, Nauka, 1992, 200 p. (In Russian).

25. Maleva M. G., Shchukina N. V., Borisova G. G. Mutual action of cadmium and manganese ions on submerged macrophytes. Water sector of Russia. Problems, technologies, management, 2016, iss. 3, pp. 82—91. Available at: https://waterjournal.ru/files/wj/1614860317.pdf. (In Russian).

26. Usyagina I. S., Voskobojnikov G. M., Pugovkin D. V., Salakhov D. O., Ilyin G. V. Results of experimental studies of the absorption of radioisotopes 85Sr and 54Mn by macrophyte algae of the Barents Sea. Science in the south of Russia, 2023, vol. 19, iss. 3, pp. 56—63. DOI: 10.7868/S25000640230308. (In Russian).

27. Zalewska T., Saniewski M. Bioaccumulation of gamma emitting radionuclides in red algae from the Baltic Sea underlaboratory conditions. Oceanologia, 2011, iss. 53 (2), pp. 631—650.

28. Boisson F., Hutchinsf D. A., Fowler S. W., Fisherf N. S., Teyssie J. L. Influence of Temperature on the Accumulation and Retention of 11 Radionuclides by the Marine Alga Fucus vesiculosus (L.). Marine Pollution Bull., 1997, vol. 35, iss. 7 (12). pp. 313—321. DOI: 10.1016/s0025-326x(97)00092-1. Available at: https://www.sci-hub.ru/10.1016/s0025-326x(97)00092-1.


Download »


© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594