| ||||
| ||||
Home » Archive of journals » Volume 14, No. 3, 2024 » Dating of the recent sedimentary strata of the marginal basins of Åastern Murman (Kola Peninsula) using the example of Yarnyshnaya and Zelenetskaya Bays DATING OF THE RECENT SEDIMENTARY STRATA OF THE MARGINAL BASINS OF ÅASTERN MURMAN (KOLA PENINSULA) USING THE EXAMPLE OF YARNYSHNAYA AND ZELENETSKAYA BAYSJOURNAL: Volume 14, No. 3, 2024, p. 393-405HEADING: Study and development of nature resources of the Arctic AUTHORS: Meshcheriakov, N.I., Usyagina, I.S., Ilyin, G.V., Ivanova, N.S. ORGANIZATIONS: Murmansk Marine Biological Institute of Kola Scientific Center of the Russian Academy of Sciences DOI: 10.25283/2223-4594-2024-3-393-405 UDC: 621.039.86(268.45+210.5) The article was received on: 16.03.2024 Keywords: Kola peninsula, radionuclides, sedimentation chronology, lithotypes, coastal area Bibliographic description: Meshcheriakov, N.I., Usyagina, I.S., Ilyin, G.V., Ivanova, N.S. Dating of the recent sedimentary strata of the marginal basins of Åastern Murman (Kola Peninsula) using the example of Yarnyshnaya and Zelenetskaya Bays. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 3, pp. 393-405. DOI: 10.25283/2223-4594-2024-3-393-405. (In Russian). Abstract: The authors have studied sediment genesis in the Kola Peninsula bays, the most popular and developed part of the coastal shelf by the population. The main tool used is the method of radioisotope chronology of sedimentary layers based on changes in the specific activity of the natural isotope 210Pb and technogenic 137Cs. It has been revealed that the marginal basins of Murman are characterized by monotonous sedimentation in recent centuries. The average sedimentation rate is 0.15—0.17 cm/year. The sedimentary sequence is composed of silty-pelite-sized material. It has been established that the role of ice rafting in the formation of bottom sediment in coastal bays has decreased over the past centuries. Finance info: The Russian Science Foundation grant supported the study (project no. 22-17-00243 “Radiation oceanology and geoecology of the coastal shelf of the Barents and White Seas. Bioinert interactions in the system: bottom sediments — water — macroalgae — microorganisms, their role in the remediation of the marine coastal ecosystem under radiation and chemical pollution in the Arctic”). References: 1. Zenkovich V. P. Types of shores of the Atlantic, Arctic and Indian oceans. Marine Atlas, 1953, vol. 2, sheet 13. (In Russian). 2. Klenova M. V. Geology of the Barents Sea. Moscow, USSR Academy of Sciences, 1960, 367 p. (In Russian). 3. Tarasov G. A. Upper Quaternary Sedimentogenesis on the Shelf of Western Arctic Seas, Extended Abstracts of DSc. (Geol.-Miner.) Dissertation. Inst. Okeanol. RAS. Moscow, 1998, 46 p. (In Russian). 4. Mityaev M. V., Gerasimova M. V., Berger V. J. Suspended particulate matter and vertical fluxes of sedimentary material in bays of the Murmansk (Barents Sea) and Karelian (White Sea) coasts. Oceanology, 2017, vol. 57, no. 2, pp. 306—314. DOI: 10.1134/S0001437016060102. 5. Aliev R. A., Bobrov V. A., Kalmykov S. N., Melgunov M. S., Vlasova I. E., Shevchenko V. P. Natural and artificial radionuclides as a tool for sedimentation studies in the Arctic region. J. Radioanal. Nucl. Chem., 2007, vol. 274, no. 2, pp. 315—321. DOI: 10.1007/s10967-007-1117-x. 6. Sanchez-Cabeza J. A., Ruiz-Fernández A. C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 2012, vol. 82, pp. 183—200. DOI: 10.1016/j.gca.2010.12.024. 7. Rusakov V. Yu., Borisov A. P., Solovieva G. Yu. Sedimentation Rates in Different Facies–Genetic Types of Bottom Sediments in the Kara Sea: Evidence from the 210Pb and 137Cs Radionuclides. Geochemistry International, 2019, vol. 57, no. 11, pp. 1185—1200. DOI: 10.1134/S0016702919110077. 8. Matishov G. G., Il’in G. V., Usyagina I. S., Moiseev D. V., Valuiskaya D. A. Radioecological Condition of the Kola Peninsula Coastal Zone According to Observations in 2013—2020. Russian Meteorology and Hydrology, 2023, vol. 48, no. 4, pp. 361—369. Available at: https://doi.org/10.3103/S106837392304009X. 9. Matishov G. G., Matishov D. G., Namyatov A. A. et al. Geochronological investigations of the flow of artificial radionuclides into the bottom deposits in the coastal waters of the Barents Sea. Abstr. 4th Conf. on Radiation Studies (radiobiology, radioecology, radiation safety), Moscow, Nov. 20—24, 2001. Moscow, 2001, vol. 2, pp. 171—179. (In Russian). 10. Il’in G. V., Kasatkina N. E., Moiseev D. V., Usyagina I. S. Infrastructure Objects of the Nuclear Fleet as Sources of Radioactive Contamination of the Barents Sea: Waste Repository in Guba Andreeva. Atomic Energy, 2017, vol. 122, pp. 131—137. Available at: https://doi.org/10.1007/s10512-017-0247-7. 11. Mityaev M. V. Murman Coast (geological, geomorphological, and climatic features, current geological processes). Apatity, KSC RAS, 2014, 226 p. (In Russian). 12. Tarasov G. A., Pogodina I. A., Khasankaev V. B., Kukina N. A., Mityaev M. V. Sedimentation processes on glacial shelves. Apatity, KSC RAS, 2000, 473 p. (In Russian). 13. Knipowitsch N. Hydrologische Untersuchungen im Europeischen Eismeer. Annalen der Hydrographie und Maritimen Meteorologie, 1905, vol. 33, pp. 241—260. 14. Mityaev M. V., Gerasimova M. V., Druzhkova E. I. Vertical particle fluxes in the coastal areas of the Barents and White seas. Oceanology, 2012, vol. 52, no. 1, pp. 112—121. DOI: 10.1134/S0001437012010158. 15. Il’in G. V., Moiseev D. V., Shirokolobov D. V., Deryabin A. A., Pavlova L. G. Long-term dynamics of hydrological conditions of the Zelenetskaya Bay, East Murman. Vestnik MGTU, 2016, vol. 19, no. 1—2, pp. 268—277. Available at: https://doi.org/10.21443/1560-9278-2016-1/2-268-277. (In Russian). 16. Appleby P. G., Piliposian G. T. Efficiency corrections for variable sample height in well-type germanium gamma detectors. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 2004, vol. 225, no. 3, pp. 423—433. Available at: https://doi.org/10.1016/j.nimb.2004.05.020. 17. Appleby P. G. 210Pb dating by low-background gamma. Hydrobiologia, 1986, vol. 43, pp. 21—27. Available at: https://link.springer.com/article/10.1007/BF00026640. 18. Schelske C. L., Peplow A., Brenner M., Spencer C. N. Low-background gamma counting: applications for 210Pb dating of sediments. J. Paleolimnol., 1994, vol. 10, pp. 115—128. Available at: https://link.springer.com/article/10.1007/BF00682508. 19. Andreeva I. A., Lapina N. N. Methods of granulometric analysis of bottom sediments of the World Ocean and geological interpretation of the results of laboratory study of the material composition of sediments. St. Petersburg, VNIIOkeangeologiya, 1998, 45 p. (In Russian). 20. Dauvalter V. A. Bottom sediments geoecology of lakes. Murmansk, Murmansk State Technical Univ., 2012, 242 p. (In Russian). 21. Sivintsev Yu. V., Vakulovsky S. M., Vasiliev A. P. et al. Technogenic Radionuclides in the Seas Surrounding Russia. Moscow, IzdAT, 2005, 624 p. (In Russian). 22. Bergqvist N.-O., Ferm R. Nuclear Explosions 1945—1998 (FOA-R-00-01572-180). Stocholm, Sweden, Defence Research Establishment, 2000, 43 p. 23. Rusakov V. Y., Lukmanov R. A., Savin A. S. About fluctuations in the excess 210Pb flux into the East Siberian Arctic Shelf sediments, the Laptev Sea. J. of Environmental Radioactivity, 2024, vol. 273, pp. 107387. Available at: https://doi.org/10.1016/j.jenvrad.2024.107387. 24. Kautsky H. Investigations on the distribution of 137Cs, 134Cs and 90Sr and the water mass transport times in the Northern North Atlantic and the North Sea. Deutsche Hydrographische Zeitschrift, 1987, vol. 40, pp. 49—69. 25. Lisitzin A. P. Marine ice-rafting as a new type of sedimentogenesis in the arctic and novel approaches to studying sedimentary processes. Russian Geology and Geophysics, 2010, vol. 51, no. 1, pp. 12—47. DOI: 10.1016/j.rgg.2009.12.002. Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|