| ||||
| ||||
Home » Archive of journals » Volume 14, No. 2, 2024 » Titanium-rare-metal concentrates from raw materials of the Kola region and the possibility of their joint processing to obtain scarce products TITANIUM-RARE-METAL CONCENTRATES FROM RAW MATERIALS OF THE KOLA REGION AND THE POSSIBILITY OF THEIR JOINT PROCESSING TO OBTAIN SCARCE PRODUCTSJOURNAL: Volume 14, No. 2, 2024, p. 217-225HEADING: Study and development of nature resources of the Arctic AUTHORS: Gerasimova, L.G., Artemenkov, A.G., Nikolaev, A.I., Shchukina, E.S. ORGANIZATIONS: Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences» DOI: 10.25283/2223-4594-2024-2-217-225 UDC: 622.343,4:661.882 The article was received on: 05.02.2024 Keywords: strategic materials, perovskite, titanite, titanium deposits, sulfuric acid decomposition, titanium, niobium, radioactive components Bibliographic description: Gerasimova, L.G., Artemenkov, A.G., Nikolaev, A.I., Shchukina, E.S. Titanium-rare-metal concentrates from raw materials of the Kola region and the possibility of their joint processing to obtain scarce products. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2024, vol. 14, no. 2, pp. 217-225. DOI: 10.25283/2223-4594-2024-2-217-225. (In Russian). Abstract: The current conditions in the world politics and economics determine the importance of solving the development problem of the Arctic zone of the Russian Federation. From this point of view, the use of the Kola Peninsula richest deposits to provide Russia’s high-tech industry with strategic materials is very promising. The researchers propose a new variant of combined sulfuric acid processing of the titanium-rare-metal material consisting of perovskite and sphene concentrates according to a safe scheme. Such technological method allows regulating kinetic parameters of their acid decomposition process due to different chemical activity of minerals and, thereby, contributes to the increase of titanium and niobium extraction into sulfuric acid liquid phase and its deactivation (thorium removal) due to the presence of surface-active silica in the system. Finance info: The work was supported by the Ministry of Science and Higher Education of the Russian Federation under scientific topic no. 122022400094-1 (registration FMEZ-2022-0015). References: 1. Bykhovsky L. Z., Remizova L. I. Opportunities to provide the Russian industry with titanium raw materials. Titan [Titanium], 2021, no. 1 (70), ðð. 4—14. (In Russian). 2. Makeev A. B. Pizhemskoye titanium deposit is a new object of the nearest development in the Arctic zone of Russia. Arctic: Ecology and Economy, 2021, no. 4 (39), pp. 541—556. DOI: 10.25283/2223-4594-2021-4-541-556. (In Russian). 3. Melentiev G. B., Bykhovsky L. Z. Northern and alternative resources of titanium raw materials of Russia: prospects for import substitution. Collection of articles of the IV All-Russian Scientific and Practical Conference (with international participation). In 3 parts. Syktyvkar, 2018, pp. 3—18. (In Russian). 4. Mashkovets G. A., Bykhovsky L. Z., Remizova L. I., Chebotaryova O. S. On providing the Russian industry with titanium raw materials. Mineral’nye resursy Rossii [Mineral Resources of Russia], 2016, no. 5, pp. 9—15. (In Russian). 5. State Balance of Mineral Reserves of the Russian Federation as of January 1, 2020. Iss. 7. Titanium. Moscow, FGBU “Rosgeolfond”, 2020, 60 p. (In Russian). 6. Lv W., Liu F., Chu M., Barati M. Recovery of Titania Slag and Iron from Semi-molten State Reduced Ilmenite Concentrate: Liberation Characteristics and Magnetic Separation. J. Sustain. Metall., 2022, vol. 8, pp. 228—238. Available at: https://doi.org/10.1007/s40831-021-00475-8. 7. Kim D. H., Heo J. H., Park H. S. et al. Improving the production efficiency of high-titania slag in Ti extraction process: fluxing effect on formation of pseudobrookite. Sci Rep., 2020, vol. 10, 6530. Available at: https://doi.org/10.1038/s41598-020-63532-4. 8. Nikolaev A. I., Gerasimova L. G., Petrov V. B., Mayorov V. G. Perovskite concentrate — a promising non-traditional raw material for the production of titanium and rare-metal products. Kompleksnoe ispol’zovanie mineral’nogo syr’ya [Complex use of mineral raw materials], 2015, no. 2, pp. 26—34. (In Russian). 9. Melnik N. A. Radioactivity distribution at hydrometallurgical processing of perovskite concentrate by different methods. Tsvetnaya metallurgiya [Non-ferrous metallurgy], 2003, no. 3, pp. 20—26. (In Russian). 10. Salnikova E. B., Stifeeva M. V., Chakhmouradian A. R. et al. The U–Pb system in schorlomite from calcite–amphobole–pyroxene pegmatite of the Afrikanda complex (Kola Peninsula). Dokl. EarthSc., 2018, vol. 478, pp. 148—151. Available at: https://doi.org/10.1134/S1028334X18020083. 11. Potter N. J., Kamenetsky V. S., Chakhmouradian A. R. et al. Polymineralic inclusions in oxide minerals of the Afrikanda alkaline-ultramafic complex: Implications for the evolution of perovskite mineralisation. Contrib Mineral Petrol, 2020, vol. 175, 18. Available at: https://doi.org/10.1007/s00410-020-1654-7. 12. Budin O. N., Kropachev A. N., Agafonov D. G., Cherepov N. N. Study of carbothermal method of opening of titanium raw materials on the example of artificially synthesized perovskite. Izvestiya vuzov. Tsvetnaya Metallurgiya [News of universities. Non-Ferrous Metallurgy], 2018, no. 5, pp. 23—30. Available at: https://doi.org/10.17073/0021-3438-2018-5-23-30. (In Russian). 13. Melnikov N. N., Mesyats S. P., Skorokhodov V. F. Ecological strategy of mining development — formation of new worldview for the natural resources exploitation. IMPC 2018 — 29th International Mineral Processing Congress. [S. l.], 2019, pp. 292—293. 14. Brylyakov Yu. E., Nikolaev A. I., Gerasimova L. G. Perspective directions of processing technology of concentrates of complex enrichment of apatite-nepheline ores. Gornyy zhurnal [Mining Journal], 2009, no. 9, pp. 62—65. (In Russian). 15. Chernousenko E. V., Perunkova T. N., Artemiev A. V., Mitrofanova G. V. Improvement of technologies of flotation enrichment of ores of the Kola Peninsula. Gornyy zhurnal [Mining Journal], 2020, no. 9, pp. 66—72. DOI: 10.17580/gzh.2020.09.09. (In Russian). 16. Deng Y. H. Perovskite decomposition and missing crystal planes in HRTEM. Nature, 2021, 594, pp. E6—E7. Available at: https://doi.org/10.1038/s41586-021-03423-4. 17. Mitrofanova G. V., Marchevskaya V. V., Taran A. E. Flotation separation of titanite concentrate from apatite-nepheline-titanite ores of anomalous zones of the Khibiny deposits. Zapiski Gornogo instituta [Journal of Mining Institute], 2022, vol. 256, pp. 560—566. DOI: 10.31897/PMI.2022.81. (In Russian). 18. Korneeva U. V., Marchevskaya V. V. Problems of enrichment of apatite-nepheline ores of Khibiny deposits. The future of the Arctic begins here: collection of materials II All-Russian scientific-practical conf. with international participation. Apatity, Publishing house of the branch of MAGU in Apatity, 2018, pp. 53—62. (In Russian). 19. Jung E. J., Kim J., Lee Y. R. A comparative study on the chloride effectiveness of synthetic rutile and natural rutile manufactured from ilmenite ore. Sci Rep., 2021, vol. 11, 4045. Available at: https://doi.org/10.1038/s41598-021-83485-6. 20. Copyright certificate 1249047 SSSR, MK4 C 09 C 1/36. Method of obtaining pigment titanium dioxide from perovskite / Zh. Yu. Zaonegina, G. F. Myasnikov, V. B. Petrov, A. G. Babkin, L. G. Gerasimova, D. L. Motov, H. B. Avsaragov, N. A. Melnik; Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials. Col. phil. USSR Academy of Sciences. — No. 3768410/31-26; application 17.06.84; published 07.08.86, Bul. no. 29. (In Russian). 21. Gerasimova L. G., Nikolaev A. I., Petrov V. B., Bychenya Yu. G. Nitric acid decomposition of perovskite with fluor-bearing agent. Tsvetnye Metally, 2017, no. 5, pp. 26—31. DOI: 10.17580/tsm.2017.05.07. 22. Hu Y., Tao B., Shang F. et al. Thermal decomposition of ammonium perchlorate over perovskite catalysts: Catalytic decomposition behavior, mechanism and application. Applied Surface Science, 2020, vol. 513, 145849. Available at: https://doi.org/10.1016/j.apsusc.2020.145849. Download » | ||||
© 2011-2024 Arctic: ecology and economy
DOI 10.25283/2223-4594
|