Home JOURNAL HEADINGS Author Index SUBJECT INDEX INDEX OF ORGANIZATIONS Article Index
 
Arctic: ecology and economy
ISSN 2223-4594 | ISSN 2949-110X
Advanced
Search
RuEn
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home » Archive of journals » Volume 13, No. 4, 2023 » Carbon reserves in the upper soil sediments of Samoilovsky, Bolshoy Lyakhovsky and Kotelny islands

CARBON RESERVES IN THE UPPER SOIL SEDIMENTS OF SAMOILOVSKY, BOLSHOY LYAKHOVSKY AND KOTELNY ISLANDS

JOURNAL: Volume 13, No. 4, 2023, p. 536-547

HEADING: Study and development of nature resources of the Arctic

AUTHORS: Shepelev, A.G.

ORGANIZATIONS: Melnikov Permafrost Institute of the Siberian Branch of the Russian Academy of Sciences

DOI: 10.25283/2223-4594-2023-4-536-547

UDC: 631.423.4:551.345(571.568)

The article was received on: 12.07.2023

Keywords: permafrost rocks, degradation, lemmings, organic carbon, inorganic carbon

Bibliographic description: Shepelev, A.G. Carbon reserves in the upper soil sediments of Samoilovsky, Bolshoy Lyakhovsky and Kotelny islands. Arktika: ekologiya i ekonomika. [Arctic: Ecology and Economy], 2023, vol. 13, no. 4, pp. 536-547. DOI: 10.25283/2223-4594-2023-4-536-547. (In Russian).


Abstract:

In the tundra swamps of Samoilovsky Island carbon reserves amounted to 21.5 kg TOC/m2 and 0.6 kg TIC/m2. On Bolshoy Lyakhovsky Island it makes 51.6 kg TOC/m2 and 5.9 kg TIC/m2. In the grass-hypnum bogs of Kotelny island 12.4 kg TOC/m2 and 0.3 kg TIC/m2 are deposited. On the coastal outcrops of Samoilovsky island with thermal abrasion and thermal denudation reserves vary between 85.8—115.5 kg TOC/m2 and 6.9—7.3 kg TIC/m2, and on Bolshoy Lyakhovsky island — 51.6 kg TOC/m2 and 5.4 kg TIC/m2. In the baidzharakhs of Bolshoy Lyakhovsky island the average carbon reserves make 38.6 kg TOC/m2 and 6.1 kg TIC/m2.


Finance info: The study is carried out within the basic project “Cryogenic processes and the formation of natural risks due to the development of permafrost landscapes in Eastern Siberia” (No. ÀÀÀÀ-À20-120111690009-6) and supported by the Ministry of Science and Higher Education of the Russian Federation (financing the expedition, equipping with the necessary equipment for scientific research and ensuring the safe performance of work) and Russian Foundation for Basic Research (project No. 21-55-75004_BF) (purchase of consumables and standards for the analyzer to determine the carbon content in samples).

References:

1. Feng X., Vonk J. E., van Dongen B. E. et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proceedings of the National Academy of Sciences of the United States of America,  2013, vol. 110, no. 35, pp. 14168—14173. DOI: 10.1073/pnas.1307031110.

2. Strauss J., Laboor S., Schirrmeister L. et al. Circum-Arctic Map of the Yedoma Permafrost Domain. Front. Earth Sci., 2021, vol. 9, p. 758360. DOI: 10.3389/feart.2021.758360.

3. Hugelius G., Kuhry P. Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment. Global Biogeochemical Cycles, 2009, vol. 23, GB3006. DOI: 10.1029/2008GB003419.

4. Lavoie M., Mack M. C., Schuur E. A. G. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J. of Geophysical Research Atmospheres, 2011, vol. 116, G03013. DOI: 10.1029/2010JG001629.

5. Park H., Launiainen S., Konstantinov P. Y. et al. Modeling the effect of moss cover on soil temperature and carbon fluxes at a tundra site in northeastern Siberia. J. of Geophysical Research: Biogeosciences, 2018, vol. 123, no. 9, pp. 3028—3044. DOI: 10.1029/2018JG004491.

6. Fountain A. G., Campbell J. L., Schuur E. A. G. et al. The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. Biosciences, 2012, vol. 62, pp. 405—415. DOI: 10.1525/bio.2012.62.4.11.

7. Dao T. T., Gentsch N., Mikutta R. et al. Fate of carbohydrates and lignin in north-east Siberian permafrost soils. Soil Biology and Biochemistry, 2018, vol. 116, pp. 311—322. DOI: 10.1016/j.soilbio.2017.10.032.

8. Bjorkman A. D., Myers-Smith I. H., Elmendorf S. C. et al. Plant functional trait change across a warming tundra biome. Nature, 2018, vol. 562, pp. 57—62. DOI: 10.1038/s41586-018-0563-7.

9. Gilichinsky D., Vishnivetskaya T., Petrova M. et al. Bacteria in Permafrost. Psychrophiles: from Biodiversity to Biotechnology. Berlin, Heidelberg, Springer, 2008, pp. 83—102.

10. Gentsch N., Mikutta R., Shibistova O. et al. Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia. European J. of Soil Science, 2015, vol. 66, pp. 722—734. DOI: 10.1111/ejss.12269.

11. Schuur E. A. G., McGuire A. D., Schadel C. et al. Climate change and the permafrost carbon feedback. Nature, 2015, vol. 520, pp. 171—179. DOI: 10.1038/nature14338.

12. Faucherre S., Jorgensen C. J., Blok D. et al. Short and long-term controls on active layer and permafrost carbon turnover across the Arctic. J. of Geophysical Research: Biogeosciences, 2018, vol. 123, iss. 2, pp. 372—390. DOI: 10.1002/2017JG004069.

13. Sun T., Ocko I. B., Hamburg S. P. The value of early methane mitigation in preserving Arctic summer sea ice. Environmental Research Letters, 2022, vol. 17, no. 4, 044001. DOI: 10.1088/1748-9326/ac4f10.

14. Semiletov I., Pipko I., Gustafsson O. et al. Acidification of East Siberian Arctic Shelf Waters through Addition of Freshwater and Terrestrial Carbon. Nature Geoscience, 2016, vol. 9, no. 5, pp. 361—365. DOI: 10.1038/ngeo2695.

15. Broder L., Andersson A., Tesi T. et al. Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea. Global Biogeochemical Cycles, 2019, vol. 33., pp. 85—99. DOI: 10.1029/2018GB005967.

16. Karelin D. V., Zamolodchikov D. G., Gilmanov T. G. Stocks and production of carbon in the phytomass of tundra and forest-tundra ecosystems in Russia. Lesovedenie. [Forest science], 1995, no. 5, pp. 29—36. (In Russian).

17. Hugelius G., Bockheim J. G., Camill P. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth System Science Data, 2013, vol. 5, pp. 393—402. DOI: 10.5194/essd-5-393-2013.

18. Hugelius G., Strauss J., Zubrzycki S. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 2014, vol. 11, pp. 6573—6593. DOI: 10.5194/bg-11-6573-2014.

19. Schuur E. A. G., Lee H., Vogel J. G. et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 2008, vol. 58, pp. 701—714. DOI: 10.1641/B580807.

20. Schuur E. A. G., Vogel J. G., Crummer K. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 2009, vol. 459, pp. 556—559. DOI: 10.1038/nature08031.

21. Strauss J., Schirrmeister L., Mangelsdorf K. et al. Organic-matter quality of deep permafrost carbon — a study from Arctic Siberia. Biogeosciences, 2015, vol. 12, pp. 2227—2245. DOI: 10.5194/bg-12-2227-2015.

22. Walter Anthony K. M., Zimov S. A., Grosse G. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 2014, vol. 511, pp. 452—456. DOI: 10.1038/nature13560.

23. Harden J. W., Koven C. D., Ping C.-L. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical research letters, 2012, vol. 39, L15704. DOI: 10.1029/2012GL051958.

24. Bolshiyanov D., Makarov A., Savelieva L. Lena River delta formation during the Holocene. Biogeosciences, 2015, vol. 12, pp. 579—593. DOI: 10.5194/bg-12-579-2015.

25. Meyer H., Dereviagin A., Siegert C. et al. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia — hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes, 2002, vol. 13, pp. 91—105. DOI: 10.1002/ppp.416.

26. Makeev V. M., Arslanov Kh. A., Baranovskaya O. F., Kosmodamiansky A. V., Ponomareva D. P., Tertychnaya T. V. Stratigraphy, geochronology and paleogeography of the late Pleistocene and Holocene of Kotelny Island. Byulleten’ komissii po izucheniyu chetvertichnogo perioda. [Bulletin of the commission for the study of the Quaternary period], 1989, no. 58, pp. 58—69. (In Russian).

27. Kaplina T. N. Alas complexes of Northern Yakutia. Kriosfera Zemli. [Earth’s Cryosphere], 2009, vol. 13, no. 4, pp. 3—17. (In Russian).

28. Vasilchuk Yu. K., Makeev V. M., Maslakov A. A., Budantseva N. A., Vasilchuk A. K. Reconstruction of Late Pleistocene and Early Holocene winter air temperatures on Kotelny Island from the isotope composition of re-veined ice. Kriosfera Zemli. [Earth’s Cryosphere], 2019, vol. 23, no. 2, pp. 13—28. (In Russian).

29. Zubrzycki S., Kutzbach L., Grosse G. et al. Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences, 2013, vol. 10, pp. 3507—3524. DOI: 10.5194/bg-10-3507-2013.

30. Kutzbach L., Wagner D., Pfeiffer E. M. Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry, 2004, vol. 69, pp. 341—362. DOI: 10.1023/B:BIOG.0000031053.81520.db.

31. Liljedahl A. K., Boike J., Daanen R. P. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 2016, vol. 9, pp. 312—318. DOI: 10.1038/ngeo2674.

32. Fedorov A. N. Permafrost landscapes of Yakutia: identification technique and mapping issues. Yakutsk, Institute of Permafrost Science of the Siberian Branch of the USSR Academy of Sciences, 1991, 140 p. (In Russian).

33. Geocryology of the USSR. Eastern Siberia and the Far East. Ed. by E. D. Ershov. Moscow, Nedra, 1989, 515 p. (In Russian).

34. Gunther F., Overduin P. P., Sandakov A. V. et al. Shortand long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences, 2013, vol. 10, pp. 4297—4318. DOI: 10.5194/bg-10-4297-2013.

35. Pizhankova E. I., Dobrynina M. S. Dynamics of the coast of the Lyakhovsky Islands (results of interpretation of aerospace images). Kriosfera Zemli. [Earth’s Cryosphere], 2010, vol. 16, no. 4, pp. 66—79. (In Russian).

36. Tumskoy V. E. Peculiarities of cryolithogenesis in Northern Yakutia (middle Neopleistocene to Holocene). Kriosfera Zemli. [Earth’s Cryosphere], 2012, vol. 16, no. 1, pp. 12—21. (In Russian).

37. Grosse G., Robinson J. E., Bryant R. A. et al. Distribution of Late Pleistocene Ice-rich Syngenetic Permafrost of the Yedoma Suite in East and Central Siberia, Russia. U.S. Geological Survey Open File Report, 2013, vol. 1078, pp. 1—37. DOI:10.3133/OFR20131078.

38. Wetterich S., Tumskoy V., Rudaya N. et al. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quat. Science Rev., 2016, vol. 147, pp. 298—311. DOI: 10.1016/j.quascirev.2015.11.016.

39. Boike J., Nitzbon J., Anders K. et al. A 16-year record (2002—2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models. Earth Syst. Sci. Data, 2019, vol. 11, pp. 261—299. DOI: 10.5194/essd-11-261-2019.

40. Gagnon S., Allard M. Geomorphological controls over carbon distribution in permafrost soils: the case of the Narsajuaq river valley, Nunavik (Canada). Arctic Science, 2020, vol. 6, no. 4, pp. 1—20. DOI: 10.1139/as-2019-0026.

41. Sheremetyev I. S., Rozenfeld S. B., Gruzdev A. P. Dietary Overlap among Rumin ants, Geese, and Lemmings of Wrangel Island in Summer. Russian J. of Ecology, 2017, vol. 48, pp. 532—538. DOI: 10.1134/S1067413617060091.

42. Stark S., Egelkraut D., Aronsson K.-A. et al. Contrasting vegetation states do not diverge in soil organic matter storage: Evidence from historical sites in tundra. Ecology, 2019, vol. 100, no. 7,  02731. DOI: 10.1002/ecy.2019.100.issue-7.

43. Sheremetiev I. S., Rozenfeld S. B., Baranyuk V. V. Trophic selectivity of herbivores on Wrangel Island and its role in the cycle of matter in the Arctic ecosystem. Sibirskiy Ekologicheskii Zhurnal [Contemporary Problems of Ecology], 2021, vol. 28, no. 2, pp. 174—186. (In Russian).

44. Tikhomirov B. A. On the influence of animals on the vegetation of the Taimyr tundra. Russkii ornitologicheskii zhurnal. [The Russian Journal of Ornithology], 2003, no. 215, pp. 267—273. (In Russian).

45. Schmitz O. J., Wilmers C. C., Leroux S. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science, 2018, vol. 362, no. 6419, p. eaar3213. DOI: 10.1126/science.aar3213.

46. Roy A., Suchocki M., Gough L. et al. Above- and belowground responses to long-term herbivore exclusion. Arctic, Antarctic, and Alpine Research, 2020, vol. 52, no. 1, pp. 109—119. DOI: 10.1080/15230430.2020.1733891.

47. Roy A., Gough L., Boelman N. T. et al. Small but mighty: Impacts of rodent-herbivore structures on carbon and nutrient cycling in arctic tundra. Functional Ecology, 2022, vol. 36, iss. 9, pp. 2331—2343. DOI: 10.1111/1365-2435.14127.


Download »


© 2011-2025 Arctic: ecology and economy
DOI 10.25283/2223-4594